PARTICIPANT SUMMARY

2 • 0 • 1 • 7

Please see the corresponding US participant summary for any statistics not represented in this supplement.
Table of Contents

Evaluation Criteria ... 4

Hematology

Hematology with 5-part Automated Differential (CL Samples – Module 223) ... 5

- White Blood Cell Count ... 5
- Red Blood Cell Count .. 6
- Hemoglobin ... 7
- Hematocrit ... 8
- Platelet Count .. 9
- Automated Differential ... 10

Blood Bank

- ABO Group .. 15
- Rh Factor (D Type) .. 15
- Unexpected Antibody Detection .. 16
- Antibody Identification ... 16
- Compatibility Testing ... 17

Coagulation

- Prothrombin Time ... 18
 - International Normalized Ratio (INR) .. 21
- Activated Partial Thromboplastin Time .. 24
- Fibrinogen ... 26

Urinalysis

- Urinalysis Dipstick .. 27
 - Specific Gravity ... 27
 - pH .. 28
 - Protein ... 29
 - Glucose .. 30
 - Ketones ... 31
 - Bilirubin ... 32
 - Urobilinogen ... 33
 - Blood or Hemoglobin ... 34
 - Leukocyte Esterase ... 35
 - Nitrite .. 36
 - Microalbumin (Dipstick Only) ... 37

- Urine hCG ... 37

Microbiology

- Antimicrobial Susceptibility Testing .. 38
- Parasitology (PA Specimens) ... 40
- Parasitology (FP Specimens) .. 42
Table of Contents (cont’d)

Immunology
- **Antinuclear Antibody** .. 47
 - Qualitative .. 47
 - Quantitative .. 47
- **Anti-dsDNA** .. 49
- **Anti-RNP** ... 49
- **Anti-RNP/Sm** ... 50
- **Anti-SSA** ... 50
- **Anti-SSB** ... 51
- **Anti-SSA/SSB** ... 51
- **Anti-Sm** .. 52
- **Rubella** ... 53
 - Qualitative .. 53
 - Quantitative .. 54
Syphilis Serology
- **VDRL Slide** .. 55
- **VDRL Slide (Titer)** ... 56
- **MHA-TP** ... 58
- **TPA** .. 59
- **RPR** ... 60
- **RPR (Titer)** .. 61
Viral Markers
- **Anti-HBc (IgM)** .. 64
- **Anti-HBc (Total/IgG)** .. 65
- **Anti-HIV** .. 66
- **Anti-HAV (IgM)** ... 68
- **Anti-HAV (Total/IgG)** .. 69
- **HBeAg** ... 70
- **Anti-HBs** .. 71
- **HBsAg** ... 72
- **Anti-HCV** ... 73
Toxoplasma gondii
- **Qualitative (IgG)** ... 74
- **Quantitative (IgG)** .. 74
- **Qualitative (IgM)** .. 75
- **Quantitative (IgM)** .. 75
Cytomegalovirus (CMV)
- **Qualitative (IgG)** ... 76
- **Quantitative (IgG)** .. 76
- **Qualitative (IgM)** .. 77
- **Quantitative (IgM)** .. 77
Chemistry
- **CK-MB** .. 78
EVALUATION CRITERIA

The evaluation criteria used in the MLE Program is in accordance with the Clinical Laboratory Improvement Amendments of 1988 (CLIA ‘88) federal requirements for proficiency testing. The criteria are included below.

Qualitative
For qualitative procedures, evaluation is based on participant or referee consensus. A minimum percentage of participants must receive a passing score or the challenge is not evaluated due to lack of consensus. These percentages are listed below.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobial Susceptibility Testing</td>
<td>80%</td>
</tr>
<tr>
<td>Antinuclear Antibody</td>
<td>80%</td>
</tr>
<tr>
<td>Blood Bank</td>
<td>95%</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>80%</td>
</tr>
<tr>
<td>Microalbumin (Semi-Quantitative)</td>
<td>80%</td>
</tr>
<tr>
<td>Parasite Identification</td>
<td>80%</td>
</tr>
<tr>
<td>Rubella</td>
<td>80%</td>
</tr>
<tr>
<td>Syphilis Serology</td>
<td>80%</td>
</tr>
<tr>
<td>Toxoplasma</td>
<td>80%</td>
</tr>
<tr>
<td>Urine Dipstick</td>
<td>80%</td>
</tr>
<tr>
<td>Urine hCG</td>
<td>80%</td>
</tr>
<tr>
<td>Viral Markers</td>
<td>80%</td>
</tr>
</tbody>
</table>

Quantitative
For quantitative procedures, a mean and standard deviation (SD) are calculated for each peer group consisting of 10 or more laboratories. Acceptable performance is established based on a target value ± the intervals below. An explanation on how to calculate the range of acceptability based upon these limits is also provided in your MLE Program Guide on page 37 under the heading "Acceptable Ranges for Quantitative Results."

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated Partial Thromboplastin Time</td>
<td>± 15%</td>
</tr>
<tr>
<td>Automated Differential</td>
<td>± 3 SD</td>
</tr>
<tr>
<td>CK-MB (U/L)</td>
<td>± 3 SD</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>± 2 SD</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>± 20%</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>± 6%</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>± 7%</td>
</tr>
<tr>
<td>International Normalized Ratio (INR)</td>
<td>± 20%</td>
</tr>
<tr>
<td>Platelet Count</td>
<td>± 25%</td>
</tr>
<tr>
<td>Prothrombin Time</td>
<td>± 15%</td>
</tr>
<tr>
<td>Red Blood Cell Count</td>
<td>± 6%</td>
</tr>
<tr>
<td>Rubella</td>
<td>± 3 SD</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>± 0.010</td>
</tr>
<tr>
<td>Toxoplasma</td>
<td>± 2 SD</td>
</tr>
<tr>
<td>White Blood Cell Count</td>
<td>± 15%</td>
</tr>
</tbody>
</table>
HEMATOLOGY W/ 5-PART DIFFERENTIAL–WHITE BLOOD CELL COUNT (x K/μL)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>19.42</td>
<td>2.06</td>
<td>10.6</td>
<td>20.1</td>
<td>16.5 - 22.4</td>
<td></td>
<td>67</td>
<td>2.79</td>
<td>0.57</td>
<td>20.5</td>
<td>3.0</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>20.91</td>
<td>0.90</td>
<td>4.3</td>
<td>20.8</td>
<td>17.7 - 24.1</td>
<td>38</td>
<td>3.25</td>
<td>0.22</td>
<td>6.6</td>
<td>3.2</td>
<td>2.7 - 3.8</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>20.94</td>
<td>0.79</td>
<td>3.8</td>
<td>20.8</td>
<td>17.7 - 24.1</td>
<td>32</td>
<td>3.28</td>
<td>0.22</td>
<td>6.7</td>
<td>3.2</td>
<td>2.7 - 3.8</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>17.30</td>
<td>1.06</td>
<td>6.1</td>
<td>17.0</td>
<td>14.7 - 19.9</td>
<td>28</td>
<td>2.16</td>
<td>0.16</td>
<td>7.4</td>
<td>2.1</td>
<td>1.8 - 2.5</td>
</tr>
<tr>
<td>Specimen CL-12</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>2.79</td>
<td>0.57</td>
<td>20.5</td>
<td>3.0</td>
<td>2.3 - 3.3</td>
<td></td>
<td>67</td>
<td>19.49</td>
<td>2.05</td>
<td>10.5</td>
<td>20.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>3.25</td>
<td>0.22</td>
<td>6.6</td>
<td>3.2</td>
<td>2.7 - 3.8</td>
<td>37</td>
<td>20.84</td>
<td>0.67</td>
<td>3.2</td>
<td>20.7</td>
<td>17.7 - 24.0</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>3.28</td>
<td>0.22</td>
<td>6.7</td>
<td>3.2</td>
<td>2.7 - 3.8</td>
<td>31</td>
<td>20.93</td>
<td>0.64</td>
<td>3.1</td>
<td>20.9</td>
<td>17.7 - 24.1</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>2.16</td>
<td>0.16</td>
<td>7.4</td>
<td>2.1</td>
<td>1.8 - 2.5</td>
<td>27</td>
<td>17.29</td>
<td>1.11</td>
<td>6.4</td>
<td>17.1</td>
<td>14.6 - 19.9</td>
</tr>
</tbody>
</table>

Specimen CL-13												
All Method	67	7.19	0.81	11.2	7.5	6.1 - 8.3	67	19.49	2.05	10.5	20.4	16.5 - 22.5
All Abbott Cell-Dyn Instruments	38	7.79	0.25	3.3	7.8	6.6 - 9.0	37	20.84	0.67	3.2	20.7	17.7 - 24.0
Abbott Cell-Dyn Ruby	32	7.81	0.25	3.2	7.8	6.6 - 9.0	31	20.93	0.64	3.1	20.9	17.7 - 24.1
Orphee Mythic 22	27	6.29	0.38	6.1	6.3	5.3 - 7.3	27	17.29	1.11	6.4	17.1	14.6 - 19.9

Specimen CL-14												
All Method	67	7.19	0.81	11.2	7.5	6.1 - 8.3	67	19.49	2.05	10.5	20.4	16.5 - 22.5
All Abbott Cell-Dyn Instruments	38	3.23	0.20	6.3	3.2	2.7 - 3.8	32	3.25	0.21	6.6	3.2	2.7 - 3.8
Abbott Cell-Dyn Ruby	32	3.25	0.21	6.6	3.2	2.7 - 3.8	32	3.25	0.21	6.6	3.2	2.7 - 3.8
Orphee Mythic 22	27	2.16	0.15	6.8	2.2	1.8 - 2.5	27	2.16	0.15	6.8	2.2	1.8 - 2.5
HEMATOLOGY W/ 5-PART DIFFERENTIAL--RED BLOOD CELL COUNT (x M/uL)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>68</td>
<td>5.151</td>
<td>0.142</td>
<td>2.8</td>
<td>5.11</td>
<td>4.84 - 5.46</td>
<td>68</td>
<td>2.110</td>
<td>0.071</td>
<td>3.4</td>
<td>2.11</td>
<td>1.98 - 2.24</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>5.187</td>
<td>0.133</td>
<td>2.6</td>
<td>5.17</td>
<td>4.87 - 5.50</td>
<td>38</td>
<td>2.128</td>
<td>0.052</td>
<td>2.5</td>
<td>2.13</td>
<td>2.00 - 2.26</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>5.206</td>
<td>0.136</td>
<td>2.6</td>
<td>5.22</td>
<td>4.89 - 5.52</td>
<td>32</td>
<td>2.125</td>
<td>0.052</td>
<td>2.4</td>
<td>2.13</td>
<td>1.99 - 2.26</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>5.101</td>
<td>0.142</td>
<td>2.8</td>
<td>5.07</td>
<td>4.79 - 5.41</td>
<td>29</td>
<td>2.086</td>
<td>0.086</td>
<td>4.1</td>
<td>2.08</td>
<td>1.96 - 2.22</td>
</tr>
</tbody>
</table>

Specimen CL-13

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>67</td>
<td>4.603</td>
<td>0.123</td>
<td>2.7</td>
<td>4.62</td>
<td>4.32 - 4.88</td>
<td>65</td>
<td>5.130</td>
<td>0.136</td>
<td>2.7</td>
<td>5.11</td>
<td>4.82 - 5.44</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>4.638</td>
<td>0.099</td>
<td>2.1</td>
<td>4.64</td>
<td>4.35 - 4.92</td>
<td>38</td>
<td>5.157</td>
<td>0.121</td>
<td>2.4</td>
<td>5.16</td>
<td>4.84 - 5.47</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>4.649</td>
<td>0.098</td>
<td>2.1</td>
<td>4.65</td>
<td>4.36 - 4.93</td>
<td>32</td>
<td>5.173</td>
<td>0.113</td>
<td>2.2</td>
<td>5.17</td>
<td>4.86 - 5.49</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>4.570</td>
<td>0.162</td>
<td>3.6</td>
<td>4.56</td>
<td>4.29 - 4.85</td>
<td>28</td>
<td>5.091</td>
<td>0.209</td>
<td>4.1</td>
<td>5.05</td>
<td>4.78 - 5.40</td>
</tr>
</tbody>
</table>

Specimen CL-15

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>66</td>
<td>2.113</td>
<td>0.066</td>
<td>3.1</td>
<td>2.10</td>
<td>1.98 - 2.24</td>
<td>65</td>
<td>5.130</td>
<td>0.136</td>
<td>2.7</td>
<td>5.11</td>
<td>4.82 - 5.44</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>2.128</td>
<td>0.055</td>
<td>2.6</td>
<td>2.12</td>
<td>1.99 - 2.26</td>
<td>38</td>
<td>2.128</td>
<td>0.055</td>
<td>2.6</td>
<td>2.12</td>
<td>1.99 - 2.26</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>2.121</td>
<td>0.051</td>
<td>2.4</td>
<td>2.12</td>
<td>1.99 - 2.25</td>
<td>32</td>
<td>2.128</td>
<td>0.055</td>
<td>2.6</td>
<td>2.12</td>
<td>1.99 - 2.26</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>2.092</td>
<td>0.101</td>
<td>4.8</td>
<td>2.08</td>
<td>1.96 - 2.22</td>
<td>28</td>
<td>5.091</td>
<td>0.209</td>
<td>4.1</td>
<td>5.05</td>
<td>4.78 - 5.40</td>
</tr>
<tr>
<td>Instrument</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>16.18</td>
<td>0.99</td>
<td>6.1</td>
<td>16.7</td>
<td>15.0 - 17.4</td>
<td>68</td>
<td>5.11</td>
<td>0.56</td>
<td>11.0</td>
<td>5.5</td>
<td>4.7 - 5.5</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>17.01</td>
<td>0.27</td>
<td>1.6</td>
<td>17.1</td>
<td>15.8 - 18.2</td>
<td>38</td>
<td>5.58</td>
<td>0.10</td>
<td>1.8</td>
<td>5.6</td>
<td>5.1 - 6.0</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>17.08</td>
<td>0.20</td>
<td>1.2</td>
<td>17.1</td>
<td>15.8 - 18.3</td>
<td>32</td>
<td>5.58</td>
<td>0.10</td>
<td>1.7</td>
<td>5.6</td>
<td>5.1 - 6.0</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>15.11</td>
<td>0.37</td>
<td>2.5</td>
<td>15.0</td>
<td>14.0 - 16.2</td>
<td>29</td>
<td>4.48</td>
<td>0.15</td>
<td>3.4</td>
<td>4.5</td>
<td>4.1 - 4.8</td>
</tr>
<tr>
<td>Specimen CL-12</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>12.76</td>
<td>1.16</td>
<td>9.1</td>
<td>13.4</td>
<td>11.8 - 13.7</td>
<td>68</td>
<td>16.10</td>
<td>0.94</td>
<td>5.8</td>
<td>16.4</td>
<td>14.9 - 17.3</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>13.73</td>
<td>0.27</td>
<td>1.9</td>
<td>13.8</td>
<td>12.7 - 14.7</td>
<td>37</td>
<td>16.88</td>
<td>0.30</td>
<td>1.8</td>
<td>16.9</td>
<td>15.6 - 18.1</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>13.79</td>
<td>0.23</td>
<td>1.7</td>
<td>13.8</td>
<td>12.8 - 14.8</td>
<td>32</td>
<td>16.95</td>
<td>0.25</td>
<td>1.5</td>
<td>17.0</td>
<td>15.7 - 18.2</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>11.50</td>
<td>0.23</td>
<td>2.0</td>
<td>11.5</td>
<td>10.6 - 12.4</td>
<td>29</td>
<td>15.10</td>
<td>0.38</td>
<td>2.5</td>
<td>15.1</td>
<td>14.0 - 16.2</td>
</tr>
<tr>
<td>Specimen CL-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>5.10</td>
<td>0.57</td>
<td>11.2</td>
<td>5.5</td>
<td>4.7 - 5.5</td>
<td>68</td>
<td>16.10</td>
<td>0.94</td>
<td>5.8</td>
<td>16.4</td>
<td>14.9 - 17.3</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>5.57</td>
<td>0.12</td>
<td>2.1</td>
<td>5.6</td>
<td>5.1 - 6.0</td>
<td>37</td>
<td>16.88</td>
<td>0.30</td>
<td>1.8</td>
<td>16.9</td>
<td>15.6 - 18.1</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>5.56</td>
<td>0.11</td>
<td>2.0</td>
<td>5.6</td>
<td>5.1 - 6.0</td>
<td>31</td>
<td>16.95</td>
<td>0.25</td>
<td>1.5</td>
<td>17.0</td>
<td>15.7 - 18.2</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>4.47</td>
<td>0.18</td>
<td>4.0</td>
<td>4.5</td>
<td>4.1 - 4.8</td>
<td>29</td>
<td>15.10</td>
<td>0.38</td>
<td>2.5</td>
<td>15.1</td>
<td>14.0 - 16.2</td>
</tr>
</tbody>
</table>

2017 MLE-M3 International Data Supplement/7
HEMATOLOGY W/ 5-PART DIFFERENTIAL–HEMATOCRIT (percent)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>45.93</td>
<td>2.07</td>
<td>4.5</td>
<td>45.8</td>
<td>43.1 - 48.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>44.70</td>
<td>1.50</td>
<td>3.4</td>
<td>44.8</td>
<td>42.0 - 47.4</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>44.74</td>
<td>1.51</td>
<td>3.4</td>
<td>44.8</td>
<td>42.0 - 47.5</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>46.91</td>
<td>1.05</td>
<td>2.2</td>
<td>46.9</td>
<td>44.0 - 49.8</td>
</tr>
<tr>
<td>Specimen</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>CL-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>66</td>
<td>15.47</td>
<td>0.69</td>
<td>4.4</td>
<td>15.3</td>
<td>14.5 - 16.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>15.11</td>
<td>0.44</td>
<td>2.9</td>
<td>15.1</td>
<td>14.2 - 16.1</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>15.10</td>
<td>0.44</td>
<td>2.9</td>
<td>15.0</td>
<td>14.1 - 16.1</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>15.85</td>
<td>0.63</td>
<td>4.0</td>
<td>15.9</td>
<td>14.9 - 16.9</td>
</tr>
<tr>
<td>Specimen</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>CL-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>65</td>
<td>38.62</td>
<td>1.44</td>
<td>3.7</td>
<td>38.5</td>
<td>36.2 - 41.0</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>37.94</td>
<td>1.16</td>
<td>3.1</td>
<td>37.7</td>
<td>35.6 - 40.3</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>37.98</td>
<td>1.12</td>
<td>3.0</td>
<td>37.8</td>
<td>35.7 - 40.3</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>39.33</td>
<td>1.15</td>
<td>2.9</td>
<td>39.7</td>
<td>36.9 - 41.7</td>
</tr>
<tr>
<td>Specimen</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>CL-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>66</td>
<td>45.65</td>
<td>2.04</td>
<td>4.5</td>
<td>45.4</td>
<td>42.9 - 48.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>44.56</td>
<td>1.32</td>
<td>3.0</td>
<td>44.3</td>
<td>41.8 - 47.3</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>44.58</td>
<td>1.16</td>
<td>2.6</td>
<td>44.5</td>
<td>41.9 - 47.3</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>27</td>
<td>46.48</td>
<td>1.41</td>
<td>3.0</td>
<td>46.3</td>
<td>43.6 - 49.3</td>
</tr>
<tr>
<td>Specimen</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>CL-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>64</td>
<td>15.39</td>
<td>0.57</td>
<td>3.7</td>
<td>15.3</td>
<td>14.4 - 16.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>15.09</td>
<td>0.37</td>
<td>2.4</td>
<td>15.0</td>
<td>14.1 - 16.0</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>15.07</td>
<td>0.37</td>
<td>2.4</td>
<td>15.0</td>
<td>14.1 - 16.0</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>15.78</td>
<td>0.56</td>
<td>3.6</td>
<td>15.7</td>
<td>14.8 - 16.8</td>
</tr>
</tbody>
</table>
Hematology W/ 5-Part Differential–Platelet Count (x K/uL)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>66</td>
<td>525.1</td>
<td>34.9</td>
<td>6.6</td>
<td>521</td>
<td>393 - 657</td>
<td>67</td>
<td>87.0</td>
<td>16.5</td>
<td>18.9</td>
<td>82</td>
<td>65 - 109</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>528.4</td>
<td>33.2</td>
<td>6.3</td>
<td>528</td>
<td>396 - 661</td>
<td>37</td>
<td>76.5</td>
<td>6.5</td>
<td>8.5</td>
<td>76</td>
<td>57 - 96</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>532.9</td>
<td>28.5</td>
<td>5.3</td>
<td>531</td>
<td>399 - 661</td>
<td>31</td>
<td>76.2</td>
<td>5.7</td>
<td>7.5</td>
<td>76</td>
<td>57 - 96</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>523.6</td>
<td>34.9</td>
<td>6.7</td>
<td>521</td>
<td>392 - 655</td>
<td>28</td>
<td>99.3</td>
<td>15.2</td>
<td>15.3</td>
<td>95</td>
<td>74 - 125</td>
</tr>
<tr>
<td>Specimen CL-12</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>87.0</td>
<td>16.5</td>
<td>18.9</td>
<td>82</td>
<td>65 - 109</td>
<td>67</td>
<td>87.0</td>
<td>16.5</td>
<td>18.9</td>
<td>82</td>
<td>65 - 109</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>76.5</td>
<td>6.5</td>
<td>8.5</td>
<td>76</td>
<td>57 - 96</td>
<td>37</td>
<td>76.5</td>
<td>6.5</td>
<td>8.5</td>
<td>76</td>
<td>57 - 96</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>76.2</td>
<td>5.7</td>
<td>7.5</td>
<td>76</td>
<td>57 - 96</td>
<td>31</td>
<td>76.2</td>
<td>5.7</td>
<td>7.5</td>
<td>76</td>
<td>57 - 96</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>99.3</td>
<td>15.2</td>
<td>15.3</td>
<td>95</td>
<td>74 - 125</td>
<td>28</td>
<td>99.3</td>
<td>15.2</td>
<td>15.3</td>
<td>95</td>
<td>74 - 125</td>
</tr>
</tbody>
</table>

Specimen CL-13												
All Method	66	281.1	21.3	7.6	280	210 - 352	67	523.7	33.2	6.3	526	392 - 655
All Abbott Cell-Dyn Instruments	36	280.3	19.2	6.9	280	210 - 351	37	528.0	31.0	5.9	531	395 - 660
Abbott Cell-Dyn Ruby	30	282.4	17.6	6.2	280	211 - 354	31	532.0	28.4	5.3	533	399 - 666
Orphee Mythic 22	29	283.3	23.1	8.2	283	212 - 355	29	520.8	33.9	6.5	524	390 - 651

Specimen CL-14												
All Method	66	281.1	21.3	7.6	280	210 - 352	67	523.7	33.2	6.3	526	392 - 655
All Abbott Cell-Dyn Instruments	36	280.3	19.2	6.9	280	210 - 351	37	528.0	31.0	5.9	531	395 - 660
Abbott Cell-Dyn Ruby	30	282.4	17.6	6.2	280	211 - 354	31	532.0	28.4	5.3	533	399 - 666
Orphee Mythic 22	29	283.3	23.1	8.2	283	212 - 355	29	520.8	33.9	6.5	524	390 - 651

Specimen CL-15												
All Method	66	86.1	15.9	18.5	83	64 - 108	66	86.1	15.9	18.5	83	64 - 108
All Abbott Cell-Dyn Instruments	37	76.2	7.3	9.5	74	57 - 96	37	76.2	7.3	9.5	74	57 - 96
Abbott Cell-Dyn Ruby	31	75.9	7.1	9.3	74	56 - 95	31	75.9	7.1	9.3	74	56 - 95
Orphee Mythic 22	27	97.6	14.0	14.4	98	73 - 123	27	97.6	14.0	14.4	98	73 - 123
HEMATOLOGY W/ 5-PART DIFFERENTIAL–NEUTROPHILS (percent)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>76.25</td>
<td>2.02</td>
<td>2.7</td>
<td>76.4</td>
<td>70.1 - 82.4</td>
<td>65</td>
<td>50.09</td>
<td>2.50</td>
<td>5.0</td>
<td>50.0</td>
<td>42.5 - 57.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>77.49</td>
<td>1.01</td>
<td>1.3</td>
<td>77.6</td>
<td>74.4 - 80.6</td>
<td>36</td>
<td>51.64</td>
<td>2.04</td>
<td>4.0</td>
<td>51.4</td>
<td>45.5 - 57.8</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>77.73</td>
<td>0.77</td>
<td>1.0</td>
<td>77.9</td>
<td>75.4 - 80.1</td>
<td>30</td>
<td>51.90</td>
<td>2.09</td>
<td>4.0</td>
<td>51.4</td>
<td>45.6 - 58.2</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>74.49</td>
<td>1.25</td>
<td>1.7</td>
<td>74.6</td>
<td>70.7 - 78.3</td>
<td>28</td>
<td>48.05</td>
<td>1.38</td>
<td>2.9</td>
<td>47.9</td>
<td>43.9 - 52.2</td>
</tr>
<tr>
<td>Specimen CL-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>65.55</td>
<td>2.41</td>
<td>3.7</td>
<td>65.9</td>
<td>58.3 - 72.8</td>
<td>66</td>
<td>75.94</td>
<td>1.89</td>
<td>2.5</td>
<td>76.3</td>
<td>70.2 - 81.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>67.12</td>
<td>1.28</td>
<td>1.9</td>
<td>67.1</td>
<td>63.2 - 71.0</td>
<td>37</td>
<td>77.22</td>
<td>1.17</td>
<td>1.5</td>
<td>77.0</td>
<td>73.6 - 80.8</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>67.26</td>
<td>1.10</td>
<td>1.6</td>
<td>67.2</td>
<td>63.9 - 70.6</td>
<td>31</td>
<td>77.34</td>
<td>0.83</td>
<td>1.1</td>
<td>77.0</td>
<td>74.8 - 79.9</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>63.37</td>
<td>1.88</td>
<td>3.0</td>
<td>63.7</td>
<td>57.7 - 69.1</td>
<td>28</td>
<td>74.17</td>
<td>1.07</td>
<td>1.4</td>
<td>74.1</td>
<td>70.9 - 77.4</td>
</tr>
<tr>
<td>Specimen CL-14</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>49.48</td>
<td>2.48</td>
<td>5.0</td>
<td>49.5</td>
<td>42.0 - 57.0</td>
<td>66</td>
<td>75.94</td>
<td>1.89</td>
<td>2.5</td>
<td>76.3</td>
<td>70.2 - 81.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>50.91</td>
<td>1.95</td>
<td>3.8</td>
<td>50.7</td>
<td>45.0 - 56.8</td>
<td>37</td>
<td>77.22</td>
<td>1.17</td>
<td>1.5</td>
<td>77.0</td>
<td>73.6 - 80.8</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>51.00</td>
<td>1.82</td>
<td>3.6</td>
<td>50.9</td>
<td>45.5 - 56.5</td>
<td>31</td>
<td>77.34</td>
<td>0.83</td>
<td>1.1</td>
<td>77.0</td>
<td>74.8 - 79.9</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>47.56</td>
<td>1.74</td>
<td>3.7</td>
<td>47.7</td>
<td>42.3 - 52.8</td>
<td>28</td>
<td>74.17</td>
<td>1.07</td>
<td>1.4</td>
<td>74.1</td>
<td>70.9 - 77.4</td>
</tr>
</tbody>
</table>
HEMATOLOGY W/ 5-PART DIFFERENTIAL–LYMPHOCYTES (percent)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>14.29</td>
<td>1.84</td>
<td>12.9</td>
<td>14.4</td>
<td>8.7 - 19.9</td>
<td>68</td>
<td>34.75</td>
<td>5.31</td>
<td>15.3</td>
<td>36.4</td>
<td>18.8 - 50.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>15.07</td>
<td>1.30</td>
<td>8.7</td>
<td>15.1</td>
<td>11.1 - 19.0</td>
<td>37</td>
<td>38.49</td>
<td>2.11</td>
<td>5.5</td>
<td>38.5</td>
<td>32.1 - 44.9</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>14.94</td>
<td>1.17</td>
<td>7.8</td>
<td>15.1</td>
<td>11.4 - 18.5</td>
<td>31</td>
<td>38.01</td>
<td>1.76</td>
<td>4.6</td>
<td>38.1</td>
<td>32.7 - 43.3</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>13.33</td>
<td>2.01</td>
<td>15.1</td>
<td>13.3</td>
<td>7.3 - 19.4</td>
<td>29</td>
<td>30.11</td>
<td>4.36</td>
<td>14.5</td>
<td>31.4</td>
<td>17.0 - 43.2</td>
</tr>
<tr>
<td>Specimen CL-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>20.12</td>
<td>4.11</td>
<td>20.4</td>
<td>22.0</td>
<td>7.7 - 32.5</td>
<td>67</td>
<td>14.46</td>
<td>1.95</td>
<td>13.5</td>
<td>14.7</td>
<td>8.6 - 20.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>22.79</td>
<td>1.11</td>
<td>4.9</td>
<td>23.0</td>
<td>19.4 - 26.2</td>
<td>36</td>
<td>14.89</td>
<td>1.20</td>
<td>8.1</td>
<td>15.3</td>
<td>11.2 - 18.6</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>22.74</td>
<td>1.11</td>
<td>4.9</td>
<td>23.0</td>
<td>19.4 - 26.1</td>
<td>31</td>
<td>14.71</td>
<td>1.15</td>
<td>7.8</td>
<td>14.8</td>
<td>11.2 - 18.2</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>16.40</td>
<td>3.64</td>
<td>22.2</td>
<td>15.8</td>
<td>5.4 - 27.4</td>
<td>29</td>
<td>13.78</td>
<td>2.36</td>
<td>17.1</td>
<td>13.7</td>
<td>6.7 - 20.9</td>
</tr>
<tr>
<td>Specimen CL-15</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>66</td>
<td>34.92</td>
<td>5.24</td>
<td>15.0</td>
<td>36.6</td>
<td>19.1 - 50.7</td>
<td>66</td>
<td>34.92</td>
<td>5.24</td>
<td>15.0</td>
<td>36.6</td>
<td>19.1 - 50.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>38.55</td>
<td>2.12</td>
<td>5.5</td>
<td>38.3</td>
<td>32.1 - 45.0</td>
<td>37</td>
<td>38.55</td>
<td>2.12</td>
<td>5.5</td>
<td>38.3</td>
<td>32.1 - 45.0</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>38.29</td>
<td>2.03</td>
<td>5.3</td>
<td>38.0</td>
<td>32.1 - 44.4</td>
<td>31</td>
<td>38.29</td>
<td>2.03</td>
<td>5.3</td>
<td>38.0</td>
<td>32.1 - 44.4</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>27</td>
<td>30.17</td>
<td>4.21</td>
<td>14.0</td>
<td>30.7</td>
<td>17.5 - 42.8</td>
<td>27</td>
<td>30.17</td>
<td>4.21</td>
<td>14.0</td>
<td>30.7</td>
<td>17.5 - 42.8</td>
</tr>
</tbody>
</table>
HEMATOLOGY W/ 5-PART DIFFERENTIAL–MONOCYTES (percent)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>5.02</td>
<td>3.24</td>
<td>64.5</td>
<td>2.9</td>
<td>0.0 - 14.8</td>
<td>68</td>
<td>10.73</td>
<td>6.55</td>
<td>61.0</td>
<td>6.8</td>
<td>0.0 - 30.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>2.41</td>
<td>0.65</td>
<td>27.1</td>
<td>2.4</td>
<td>0.4 - 4.4</td>
<td>38</td>
<td>5.61</td>
<td>0.96</td>
<td>17.2</td>
<td>5.6</td>
<td>2.7 - 8.5</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>2.49</td>
<td>0.58</td>
<td>23.3</td>
<td>2.4</td>
<td>0.7 - 4.3</td>
<td>32</td>
<td>5.75</td>
<td>0.89</td>
<td>15.4</td>
<td>5.7</td>
<td>3.0 - 8.5</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>8.52</td>
<td>1.52</td>
<td>17.9</td>
<td>8.6</td>
<td>3.9 - 13.1</td>
<td>29</td>
<td>17.58</td>
<td>4.07</td>
<td>23.1</td>
<td>16.9</td>
<td>5.3 - 29.8</td>
</tr>
<tr>
<td>Specimen CL-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>9.76</td>
<td>5.47</td>
<td>56.0</td>
<td>6.0</td>
<td>0.0 - 26.2</td>
<td>66</td>
<td>5.28</td>
<td>3.10</td>
<td>58.8</td>
<td>3.7</td>
<td>0.0 - 14.6</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>5.31</td>
<td>0.64</td>
<td>12.0</td>
<td>5.3</td>
<td>3.3 - 7.3</td>
<td>37</td>
<td>2.81</td>
<td>0.67</td>
<td>23.9</td>
<td>2.7</td>
<td>0.7 - 4.9</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>5.35</td>
<td>0.59</td>
<td>11.1</td>
<td>5.3</td>
<td>3.5 - 7.2</td>
<td>32</td>
<td>2.87</td>
<td>0.70</td>
<td>24.3</td>
<td>2.8</td>
<td>0.7 - 5.0</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>15.87</td>
<td>2.42</td>
<td>15.2</td>
<td>15.9</td>
<td>8.6 - 23.2</td>
<td>28</td>
<td>8.61</td>
<td>1.59</td>
<td>18.5</td>
<td>8.7</td>
<td>3.8 - 13.4</td>
</tr>
<tr>
<td>Specimen CL-15</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>68</td>
<td>10.85</td>
<td>6.47</td>
<td>59.7</td>
<td>7.0</td>
<td>0.0 - 30.3</td>
<td>68</td>
<td>10.85</td>
<td>6.47</td>
<td>59.7</td>
<td>7.0</td>
<td>0.0 - 30.3</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>38</td>
<td>5.88</td>
<td>1.26</td>
<td>21.3</td>
<td>6.2</td>
<td>2.1 - 9.7</td>
<td>38</td>
<td>5.88</td>
<td>1.26</td>
<td>21.3</td>
<td>6.2</td>
<td>2.1 - 9.7</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>6.12</td>
<td>0.85</td>
<td>13.8</td>
<td>6.5</td>
<td>3.5 - 8.7</td>
<td>31</td>
<td>6.12</td>
<td>0.85</td>
<td>13.8</td>
<td>6.5</td>
<td>3.5 - 8.7</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>17.49</td>
<td>4.30</td>
<td>24.6</td>
<td>17.8</td>
<td>4.5 - 30.4</td>
<td>29</td>
<td>17.49</td>
<td>4.30</td>
<td>24.6</td>
<td>17.8</td>
<td>4.5 - 30.4</td>
</tr>
</tbody>
</table>
HEMATOLOGY W/ 5-PART DIFFERENTIAL–EOSINOPHILS (percent)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CL-11</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>67</td>
<td>3.97</td>
<td>1.10</td>
<td>27.8</td>
<td>4.2</td>
<td>0.6 - 7.3</td>
<td>65</td>
<td>3.56</td>
<td>0.71</td>
<td>19.8</td>
<td>3.6</td>
<td>1.4 - 5.7</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>4.33</td>
<td>0.25</td>
<td>5.7</td>
<td>4.3</td>
<td>3.5 - 5.1</td>
<td>36</td>
<td>3.60</td>
<td>0.41</td>
<td>11.5</td>
<td>3.7</td>
<td>2.3 - 4.9</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>4.33</td>
<td>0.24</td>
<td>5.7</td>
<td>4.3</td>
<td>3.5 - 5.1</td>
<td>30</td>
<td>3.67</td>
<td>0.34</td>
<td>9.3</td>
<td>3.7</td>
<td>2.6 - 4.8</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>3.50</td>
<td>1.54</td>
<td>44.2</td>
<td>3.1</td>
<td>0.0 - 8.2</td>
<td>27</td>
<td>3.54</td>
<td>0.98</td>
<td>27.8</td>
<td>3.3</td>
<td>0.5 - 6.5</td>
</tr>
<tr>
<td>Specimen CL-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>64</td>
<td>4.02</td>
<td>0.70</td>
<td>17.5</td>
<td>4.1</td>
<td>1.9 - 6.2</td>
<td>67</td>
<td>3.79</td>
<td>1.01</td>
<td>26.7</td>
<td>4.2</td>
<td>0.7 - 6.9</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>4.23</td>
<td>0.24</td>
<td>5.8</td>
<td>4.2</td>
<td>3.4 - 5.0</td>
<td>37</td>
<td>4.28</td>
<td>0.21</td>
<td>4.9</td>
<td>4.3</td>
<td>3.6 - 5.0</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>4.21</td>
<td>0.24</td>
<td>5.6</td>
<td>4.2</td>
<td>3.4 - 5.0</td>
<td>31</td>
<td>4.28</td>
<td>0.22</td>
<td>5.1</td>
<td>4.3</td>
<td>3.6 - 5.0</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>26</td>
<td>3.81</td>
<td>1.14</td>
<td>29.8</td>
<td>3.6</td>
<td>0.4 - 7.3</td>
<td>28</td>
<td>3.11</td>
<td>1.27</td>
<td>40.8</td>
<td>2.8</td>
<td>0.0 - 7.0</td>
</tr>
<tr>
<td>Specimen CL-15</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>63</td>
<td>3.62</td>
<td>0.49</td>
<td>13.5</td>
<td>3.6</td>
<td>2.1 - 5.1</td>
<td>65</td>
<td>3.64</td>
<td>0.37</td>
<td>10.1</td>
<td>3.6</td>
<td>2.5 - 4.8</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>3.64</td>
<td>0.37</td>
<td>10.1</td>
<td>3.6</td>
<td>2.5 - 4.8</td>
<td>36</td>
<td>3.60</td>
<td>0.41</td>
<td>11.5</td>
<td>3.7</td>
<td>2.3 - 4.9</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>30</td>
<td>3.63</td>
<td>0.36</td>
<td>10.0</td>
<td>3.6</td>
<td>2.5 - 4.8</td>
<td>30</td>
<td>3.64</td>
<td>0.37</td>
<td>10.1</td>
<td>3.6</td>
<td>2.5 - 4.8</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>27</td>
<td>3.73</td>
<td>0.82</td>
<td>22.1</td>
<td>3.8</td>
<td>1.2 - 6.2</td>
<td>27</td>
<td>3.64</td>
<td>0.37</td>
<td>10.1</td>
<td>3.6</td>
<td>2.5 - 4.8</td>
</tr>
</tbody>
</table>
HEMATOLOGY W/ 5-PART DIFFERENTIAL--BASOPHILS (percent)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>65</td>
<td>0.42</td>
<td>0.20</td>
<td>48.0</td>
<td>0.4</td>
<td>0.0 - 1.1</td>
<td>68</td>
<td>0.58</td>
<td>0.43</td>
<td>74.3</td>
<td>0.5</td>
<td>0.0 - 1.9</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>0.43</td>
<td>0.26</td>
<td>60.7</td>
<td>0.4</td>
<td>0.0 - 1.3</td>
<td>38</td>
<td>0.63</td>
<td>0.42</td>
<td>67.5</td>
<td>0.6</td>
<td>0.0 - 2.0</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>0.44</td>
<td>0.26</td>
<td>58.4</td>
<td>0.5</td>
<td>0.0 - 1.3</td>
<td>32</td>
<td>0.64</td>
<td>0.39</td>
<td>61.2</td>
<td>0.7</td>
<td>0.0 - 1.9</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>0.42</td>
<td>0.15</td>
<td>36.7</td>
<td>0.4</td>
<td>0.0 - 0.9</td>
<td>29</td>
<td>0.47</td>
<td>0.37</td>
<td>79.8</td>
<td>0.4</td>
<td>0.0 - 1.6</td>
</tr>
</tbody>
</table>

Specimen CL-13

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>63</td>
<td>0.36</td>
<td>0.24</td>
<td>65.2</td>
<td>0.3</td>
<td>0.0 - 1.1</td>
<td>66</td>
<td>0.52</td>
<td>0.29</td>
<td>55.2</td>
<td>0.5</td>
<td>0.0 - 1.4</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>36</td>
<td>0.27</td>
<td>0.18</td>
<td>66.7</td>
<td>0.3</td>
<td>0.0 - 0.9</td>
<td>38</td>
<td>0.60</td>
<td>0.37</td>
<td>61.4</td>
<td>0.6</td>
<td>0.0 - 1.8</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>31</td>
<td>0.28</td>
<td>0.18</td>
<td>63.1</td>
<td>0.3</td>
<td>0.0 - 0.9</td>
<td>32</td>
<td>0.64</td>
<td>0.37</td>
<td>57.8</td>
<td>0.6</td>
<td>0.0 - 1.8</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>29</td>
<td>0.59</td>
<td>0.42</td>
<td>72.3</td>
<td>0.5</td>
<td>0.0 - 1.9</td>
<td>27</td>
<td>0.41</td>
<td>0.15</td>
<td>35.8</td>
<td>0.4</td>
<td>0.0 - 0.9</td>
</tr>
</tbody>
</table>

Specimen CL-14

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>67</td>
<td>0.61</td>
<td>0.43</td>
<td>71.7</td>
<td>0.5</td>
<td>0.0 - 2.0</td>
<td>68</td>
<td>0.66</td>
<td>0.37</td>
<td>63.8</td>
<td>0.6</td>
<td>0.0 - 2.1</td>
</tr>
<tr>
<td>All Abbott Cell-Dyn Instruments</td>
<td>37</td>
<td>0.71</td>
<td>0.43</td>
<td>61.0</td>
<td>0.7</td>
<td>0.0 - 2.1</td>
<td>38</td>
<td>0.77</td>
<td>0.42</td>
<td>55.4</td>
<td>0.8</td>
<td>0.0 - 2.1</td>
</tr>
<tr>
<td>Abbott Cell-Dyn Ruby</td>
<td>32</td>
<td>0.77</td>
<td>0.42</td>
<td>55.4</td>
<td>0.8</td>
<td>0.0 - 2.1</td>
<td>33</td>
<td>0.77</td>
<td>0.43</td>
<td>55.7</td>
<td>0.8</td>
<td>0.0 - 2.1</td>
</tr>
<tr>
<td>Orphee Mythic 22</td>
<td>28</td>
<td>0.40</td>
<td>0.27</td>
<td>67.8</td>
<td>0.3</td>
<td>0.0 - 1.3</td>
<td>29</td>
<td>0.41</td>
<td>0.28</td>
<td>67.1</td>
<td>0.3</td>
<td>0.0 - 1.3</td>
</tr>
</tbody>
</table>
BLOOD BANK

ABO GROUP

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Results</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB-11</td>
<td>Group A</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-12</td>
<td>Group AB</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-13</td>
<td>Group B</td>
<td>54</td>
<td>98.18%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>1</td>
<td>1.82%</td>
<td></td>
</tr>
<tr>
<td>BB-14</td>
<td>Group O</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-15</td>
<td>Group A</td>
<td>54</td>
<td>98.18%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>1</td>
<td>1.82%</td>
<td></td>
</tr>
</tbody>
</table>

RH FACTOR (D TYPE)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Results</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB-11</td>
<td>Rh Negative</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-12</td>
<td>Rh Positive</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-13</td>
<td>Rh Negative</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-14</td>
<td>Rh Positive</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>BB-15</td>
<td>Rh Negative</td>
<td>55</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>
BLOOD BANK

UNEXPECTED ANTIBODY DETECTION

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Results</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-11</td>
<td>No unexpected antibody detected</td>
<td>29</td>
<td>96.67%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Unexpected antibody detected</td>
<td>1</td>
<td>3.33%</td>
<td></td>
</tr>
<tr>
<td>AB-12</td>
<td>No unexpected antibody detected</td>
<td>29</td>
<td>96.67%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Unexpected antibody detected</td>
<td>1</td>
<td>3.33%</td>
<td></td>
</tr>
<tr>
<td>AB-13</td>
<td>Unexpected antibody detected</td>
<td>29</td>
<td>96.67%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>No unexpected antibody detected</td>
<td>1</td>
<td>3.33%</td>
<td></td>
</tr>
<tr>
<td>AB-14</td>
<td>Unexpected antibody detected</td>
<td>29</td>
<td>96.67%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>No unexpected antibody detected</td>
<td>1</td>
<td>3.33%</td>
<td></td>
</tr>
<tr>
<td>AB-15</td>
<td>Unexpected antibody detected</td>
<td>28</td>
<td>93.33%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>No unexpected antibody detected</td>
<td>2</td>
<td>6.67%</td>
<td></td>
</tr>
</tbody>
</table>

ANTIBODY IDENTIFICATION

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-11</td>
<td>No antibody detected</td>
<td>16</td>
<td>94.12%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Unable to identify, referred</td>
<td>1</td>
<td>5.88%</td>
<td></td>
</tr>
<tr>
<td>AB-12</td>
<td>No antibody detected</td>
<td>16</td>
<td>94.12%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Unable to identify, referred</td>
<td>1</td>
<td>5.88%</td>
<td></td>
</tr>
<tr>
<td>AB-13</td>
<td>Anti-D</td>
<td>17</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>AB-14</td>
<td>Anti-jk^a</td>
<td>17</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>AB-15</td>
<td>Anti-s</td>
<td>16</td>
<td>94.12%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Anti-S</td>
<td>1</td>
<td>5.88%</td>
<td></td>
</tr>
</tbody>
</table>
BLOOD BANK

COMPATIBILITY TESTING

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Results</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-11</td>
<td>Compatible</td>
<td>38</td>
<td>97.44%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Not Compatible</td>
<td>1</td>
<td>2.56%</td>
<td></td>
</tr>
<tr>
<td>AB-12</td>
<td>Compatible</td>
<td>38</td>
<td>97.44%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Not Compatible</td>
<td>1</td>
<td>2.56%</td>
<td></td>
</tr>
<tr>
<td>AB-13</td>
<td>Not Compatible</td>
<td>38</td>
<td>97.44%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Compatible</td>
<td>1</td>
<td>2.56%</td>
<td></td>
</tr>
<tr>
<td>AB-14</td>
<td>Not Compatible</td>
<td>39</td>
<td>100%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>AB-15</td>
<td>Compatible</td>
<td>36</td>
<td>92.31%</td>
<td>Acceptable</td>
</tr>
<tr>
<td></td>
<td>Not Compatible</td>
<td>3</td>
<td>7.69%</td>
<td></td>
</tr>
</tbody>
</table>
Coagulation

PROTHROMBIN TIME (seconds)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>104</td>
<td>12.56</td>
<td>1.41</td>
<td>11.2</td>
<td>12.9</td>
<td>10.6 - 14.5</td>
<td>105</td>
<td>22.66</td>
<td>3.26</td>
<td>14.4</td>
<td>23.2</td>
<td>19.2 - 26.1</td>
</tr>
<tr>
<td>Dade Innovin</td>
<td>5</td>
<td>10.03</td>
<td>0.21</td>
<td>2.1</td>
<td>10.1</td>
<td>8.5 - 11.6</td>
<td>5</td>
<td>20.03</td>
<td>1.03</td>
<td>5.1</td>
<td>20.5</td>
<td>17.0 - 23.1</td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>20</td>
<td>11.18</td>
<td>0.50</td>
<td>4.5</td>
<td>11.1</td>
<td>9.5 - 12.9</td>
<td>21</td>
<td>19.87</td>
<td>0.97</td>
<td>4.9</td>
<td>19.7</td>
<td>16.8 - 22.9</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>28</td>
<td>10.96</td>
<td>0.65</td>
<td>5.9</td>
<td>11.0</td>
<td>9.3 - 12.7</td>
<td>29</td>
<td>19.78</td>
<td>0.97</td>
<td>4.9</td>
<td>19.7</td>
<td>16.8 - 22.8</td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine Cl+</td>
<td>8</td>
<td>12.95</td>
<td>0.35</td>
<td>2.7</td>
<td>13.0</td>
<td>11.0 - 14.9</td>
<td>8</td>
<td>23.63</td>
<td>1.23</td>
<td>5.2</td>
<td>23.8</td>
<td>20.0 - 27.2</td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>7</td>
<td>13.26</td>
<td>0.54</td>
<td>4.1</td>
<td>13.0</td>
<td>11.2 - 15.3</td>
<td>7</td>
<td>25.39</td>
<td>2.37</td>
<td>9.3</td>
<td>25.7</td>
<td>21.5 - 29.2</td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>18</td>
<td>14.01</td>
<td>0.58</td>
<td>4.1</td>
<td>13.8</td>
<td>11.9 - 16.2</td>
<td>18</td>
<td>26.26</td>
<td>0.85</td>
<td>3.2</td>
<td>26.3</td>
<td>22.3 - 30.3</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>34</td>
<td>13.58</td>
<td>0.69</td>
<td>5.1</td>
<td>13.5</td>
<td>11.5 - 15.7</td>
<td>34</td>
<td>25.49</td>
<td>1.72</td>
<td>6.8</td>
<td>25.7</td>
<td>21.6 - 29.4</td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td>5</td>
<td>10.82</td>
<td>0.13</td>
<td>1.2</td>
<td>10.8</td>
<td>9.1 - 12.5</td>
<td>5</td>
<td>22.78</td>
<td>1.26</td>
<td>5.5</td>
<td>22.9</td>
<td>19.3 - 26.2</td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>12.20</td>
<td>0.60</td>
<td>4.9</td>
<td>12.0</td>
<td>10.3 - 14.1</td>
<td>5</td>
<td>17.40</td>
<td>0.61</td>
<td>3.5</td>
<td>17.6</td>
<td>14.7 - 20.1</td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td>5</td>
<td>10.82</td>
<td>0.13</td>
<td>1.2</td>
<td>10.8</td>
<td>9.1 - 12.5</td>
<td>5</td>
<td>22.78</td>
<td>1.26</td>
<td>5.5</td>
<td>22.9</td>
<td>19.3 - 26.2</td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>17</td>
<td>13.42</td>
<td>0.32</td>
<td>2.4</td>
<td>13.4</td>
<td>11.4 - 15.5</td>
<td>18</td>
<td>25.13</td>
<td>1.55</td>
<td>6.2</td>
<td>25.2</td>
<td>21.3 - 29.0</td>
</tr>
</tbody>
</table>
PROTHROMBIN TIME (seconds)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CG-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>110</td>
<td>22.07</td>
<td>3.12</td>
<td>14.1</td>
<td>22.4</td>
<td>18.7 - 25.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dade Behring BFT II</td>
<td>5</td>
<td>20.30</td>
<td>0.87</td>
<td>4.3</td>
<td>20.3</td>
<td>17.2 - 23.4</td>
<td>5</td>
<td>28.58</td>
<td>2.32</td>
<td>8.1</td>
<td>29.5</td>
<td>24.2 - 32.9</td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>20</td>
<td>19.90</td>
<td>0.69</td>
<td>3.5</td>
<td>19.9</td>
<td>16.9 - 22.9</td>
<td>21</td>
<td>26.10</td>
<td>1.25</td>
<td>4.8</td>
<td>26.1</td>
<td>22.1 - 30.1</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>30</td>
<td>19.73</td>
<td>0.93</td>
<td>4.7</td>
<td>19.8</td>
<td>16.7 - 22.7</td>
<td>29</td>
<td>26.45</td>
<td>1.62</td>
<td>6.1</td>
<td>26.1</td>
<td>22.4 - 30.5</td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine Cl+</td>
<td>6</td>
<td>23.20</td>
<td>1.79</td>
<td>7.7</td>
<td>23.9</td>
<td>19.7 - 26.7</td>
<td>8</td>
<td>31.38</td>
<td>2.87</td>
<td>9.1</td>
<td>31.8</td>
<td>26.6 - 36.1</td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>6</td>
<td>26.33</td>
<td>3.22</td>
<td>12.2</td>
<td>25.6</td>
<td>22.3 - 30.3</td>
<td>7</td>
<td>32.91</td>
<td>4.25</td>
<td>12.9</td>
<td>33.8</td>
<td>27.9 - 37.9</td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>18</td>
<td>24.92</td>
<td>0.93</td>
<td>3.7</td>
<td>25.0</td>
<td>21.1 - 28.7</td>
<td>18</td>
<td>34.76</td>
<td>1.50</td>
<td>4.3</td>
<td>34.7</td>
<td>29.5 - 40.0</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>32</td>
<td>24.57</td>
<td>1.43</td>
<td>5.8</td>
<td>24.9</td>
<td>20.8 - 28.3</td>
<td>34</td>
<td>33.64</td>
<td>2.92</td>
<td>8.7</td>
<td>34.1</td>
<td>28.5 - 38.7</td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>22.25</td>
<td>0.54</td>
<td>2.4</td>
<td>22.4</td>
<td>18.9 - 25.6</td>
<td>5</td>
<td>31.36</td>
<td>2.75</td>
<td>8.8</td>
<td>31.6</td>
<td>26.6 - 36.1</td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>21.04</td>
<td>2.24</td>
<td>10.7</td>
<td>21.2</td>
<td>17.8 - 24.2</td>
<td>5</td>
<td>20.72</td>
<td>0.96</td>
<td>4.6</td>
<td>20.8</td>
<td>17.6 - 23.9</td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>6</td>
<td>16.98</td>
<td>0.87</td>
<td>5.1</td>
<td>16.7</td>
<td>14.4 - 19.6</td>
<td>18</td>
<td>32.83</td>
<td>1.97</td>
<td>6.0</td>
<td>33.2</td>
<td>27.9 - 37.8</td>
</tr>
<tr>
<td>Specimen CG-14</td>
<td></td>
</tr>
<tr>
<td>Dade Innovin</td>
<td></td>
</tr>
<tr>
<td>Labs Mean SD CV Median Range</td>
<td></td>
<td>22.4</td>
<td>14.1</td>
<td>28.58</td>
<td>32.91</td>
<td>18.7 - 25.4</td>
<td>105</td>
<td>29.60</td>
<td>4.86</td>
<td>16.4</td>
<td>30.2</td>
<td>25.1 - 34.1</td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>21</td>
<td>26.10</td>
<td>1.25</td>
<td>4.8</td>
<td>26.1</td>
<td>22.1 - 30.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>29</td>
<td>26.45</td>
<td>1.62</td>
<td>6.1</td>
<td>26.1</td>
<td>22.4 - 30.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine Cl+</td>
<td>8</td>
<td>31.38</td>
<td>2.87</td>
<td>9.1</td>
<td>31.8</td>
<td>26.6 - 36.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>7</td>
<td>32.91</td>
<td>4.25</td>
<td>12.9</td>
<td>33.8</td>
<td>27.9 - 37.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>18</td>
<td>34.76</td>
<td>1.50</td>
<td>4.3</td>
<td>34.7</td>
<td>29.5 - 40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>34</td>
<td>33.64</td>
<td>2.92</td>
<td>8.7</td>
<td>34.1</td>
<td>28.5 - 38.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>31.36</td>
<td>2.75</td>
<td>8.8</td>
<td>31.6</td>
<td>26.6 - 36.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>20.72</td>
<td>0.96</td>
<td>4.6</td>
<td>20.8</td>
<td>17.6 - 23.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>6</td>
<td>32.83</td>
<td>1.97</td>
<td>6.0</td>
<td>33.2</td>
<td>27.9 - 37.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROTHROMBIN TIME (seconds)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>87</td>
<td>28.52</td>
<td>5.49</td>
<td>19.3</td>
<td>27.9</td>
<td>24.2 - 32.8</td>
</tr>
<tr>
<td>Dade Innovin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dade Behring BFT II</td>
<td>5</td>
<td>24.68</td>
<td>2.37</td>
<td>9.6</td>
<td>24.5</td>
<td>20.9 - 28.4</td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>9</td>
<td>21.30</td>
<td>1.71</td>
<td>8.0</td>
<td>20.7</td>
<td>18.1 - 24.5</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>17</td>
<td>22.34</td>
<td>2.23</td>
<td>10.0</td>
<td>22.0</td>
<td>18.9 - 25.7</td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine CI+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>7</td>
<td>31.13</td>
<td>2.91</td>
<td>9.4</td>
<td>32.3</td>
<td>26.4 - 35.8</td>
</tr>
<tr>
<td>Diagnostica Stago STart 4/8</td>
<td>5</td>
<td>31.56</td>
<td>4.35</td>
<td>13.8</td>
<td>33.1</td>
<td>26.8 - 36.3</td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>18</td>
<td>32.03</td>
<td>3.27</td>
<td>10.2</td>
<td>32.5</td>
<td>27.2 - 36.9</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>31</td>
<td>32.11</td>
<td>3.84</td>
<td>12.0</td>
<td>32.4</td>
<td>27.2 - 37.0</td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>27.04</td>
<td>2.44</td>
<td>9.0</td>
<td>27.3</td>
<td>22.9 - 31.1</td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>24.43</td>
<td>2.17</td>
<td>8.9</td>
<td>24.7</td>
<td>20.7 - 28.1</td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>18</td>
<td>32.53</td>
<td>3.66</td>
<td>11.3</td>
<td>34.3</td>
<td>27.6 - 37.5</td>
</tr>
</tbody>
</table>
PROTHROMBIN TIME—INTERNATIONAL NORMALIZED RATIO (INR)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>100</td>
<td>1.03</td>
<td>0.09</td>
<td>8.2</td>
<td>1.0</td>
<td>0.8 - 1.3</td>
<td>103</td>
<td>2.05</td>
<td>0.28</td>
<td>13.7</td>
<td>2.0</td>
<td>1.6 - 2.5</td>
</tr>
<tr>
<td>Dade Innovin</td>
<td></td>
</tr>
<tr>
<td>Dade Behring BFT II</td>
<td>5</td>
<td>1.13</td>
<td>0.05</td>
<td>4.4</td>
<td>1.1</td>
<td>0.9 - 1.4</td>
<td>5</td>
<td>2.08</td>
<td>0.17</td>
<td>8.2</td>
<td>2.1</td>
<td>1.6 - 2.5</td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>20</td>
<td>1.08</td>
<td>0.08</td>
<td>7.1</td>
<td>1.1</td>
<td>0.8 - 1.3</td>
<td>21</td>
<td>1.93</td>
<td>0.12</td>
<td>6.0</td>
<td>1.9</td>
<td>1.5 - 2.4</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>28</td>
<td>1.08</td>
<td>0.07</td>
<td>6.7</td>
<td>1.1</td>
<td>0.8 - 1.3</td>
<td>29</td>
<td>1.94</td>
<td>0.13</td>
<td>6.5</td>
<td>1.9</td>
<td>1.5 - 2.4</td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine CI+</td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>0.92</td>
<td>0.13</td>
<td>14.2</td>
<td>1.0</td>
<td>0.7 - 1.2</td>
<td>5</td>
<td>2.00</td>
<td>0.39</td>
<td>19.7</td>
<td>2.2</td>
<td>1.6 - 2.4</td>
</tr>
<tr>
<td>Diagnostica Stago STart 4/8</td>
<td>6</td>
<td>1.08</td>
<td>0.17</td>
<td>15.9</td>
<td>1.1</td>
<td>0.8 - 1.3</td>
<td>6</td>
<td>2.58</td>
<td>0.45</td>
<td>17.4</td>
<td>2.5</td>
<td>2.0 - 3.1</td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>16</td>
<td>1.05</td>
<td>0.06</td>
<td>6.0</td>
<td>1.0</td>
<td>0.8 - 1.3</td>
<td>16</td>
<td>2.35</td>
<td>0.13</td>
<td>5.4</td>
<td>2.3</td>
<td>1.8 - 2.9</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>26</td>
<td>1.03</td>
<td>0.07</td>
<td>6.7</td>
<td>1.0</td>
<td>0.8 - 1.3</td>
<td>26</td>
<td>2.35</td>
<td>0.18</td>
<td>7.6</td>
<td>2.3</td>
<td>1.8 - 2.9</td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>0.92</td>
<td>0.08</td>
<td>9.1</td>
<td>0.9</td>
<td>0.7 - 1.2</td>
<td>5</td>
<td>1.96</td>
<td>0.27</td>
<td>13.8</td>
<td>2.0</td>
<td>1.5 - 2.4</td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td>5</td>
<td>1.06</td>
<td>0.05</td>
<td>5.2</td>
<td>1.1</td>
<td>0.8 - 1.3</td>
<td>5</td>
<td>1.98</td>
<td>0.13</td>
<td>6.6</td>
<td>2.0</td>
<td>1.5 - 2.4</td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td>18</td>
<td>1.00</td>
<td>0.07</td>
<td>6.9</td>
<td>1.0</td>
<td>0.8 - 1.2</td>
<td>18</td>
<td>2.03</td>
<td>0.21</td>
<td>10.1</td>
<td>2.1</td>
<td>1.6 - 2.5</td>
</tr>
<tr>
<td>Reagent/Instrument</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen CG-13</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>100</td>
<td>1.11</td>
<td>0.09</td>
<td>7.7</td>
<td>1.1</td>
<td>0.8 - 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dade Innovin</td>
<td></td>
</tr>
<tr>
<td>Dade Behring BFT II</td>
<td>5</td>
<td>1.18</td>
<td>0.05</td>
<td>4.3</td>
<td>1.2</td>
<td>0.9 - 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>21</td>
<td>1.09</td>
<td>0.07</td>
<td>6.4</td>
<td>1.1</td>
<td>0.8 - 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>29</td>
<td>1.11</td>
<td>0.07</td>
<td>6.4</td>
<td>1.1</td>
<td>0.8 - 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine CI+</td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>0.98</td>
<td>0.16</td>
<td>16.8</td>
<td>1.0</td>
<td>0.7 - 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago TStart 4/8</td>
<td>6</td>
<td>1.18</td>
<td>0.19</td>
<td>16.4</td>
<td>1.2</td>
<td>0.9 - 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>16</td>
<td>1.13</td>
<td>0.07</td>
<td>6.1</td>
<td>1.1</td>
<td>0.9 - 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>26</td>
<td>1.11</td>
<td>0.08</td>
<td>7.3</td>
<td>1.1</td>
<td>0.8 - 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>1.06</td>
<td>0.11</td>
<td>10.8</td>
<td>1.1</td>
<td>0.8 - 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>1.22</td>
<td>0.04</td>
<td>3.7</td>
<td>1.2</td>
<td>0.9 - 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>17</td>
<td>1.11</td>
<td>0.09</td>
<td>7.7</td>
<td>1.1</td>
<td>0.8 - 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen CG-14</td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>103</td>
<td>2.79</td>
<td>0.51</td>
<td>18.2</td>
<td>2.7</td>
<td>2.2 - 3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dade Innovin</td>
<td></td>
</tr>
<tr>
<td>Dade Behring BFT II</td>
<td>5</td>
<td>2.80</td>
<td>0.29</td>
<td>10.5</td>
<td>2.8</td>
<td>2.2 - 3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>21</td>
<td>2.50</td>
<td>0.18</td>
<td>7.2</td>
<td>2.5</td>
<td>1.9 - 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>28</td>
<td>2.52</td>
<td>0.18</td>
<td>7.2</td>
<td>2.5</td>
<td>2.0 - 3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine CI+</td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>2.86</td>
<td>0.74</td>
<td>25.8</td>
<td>3.1</td>
<td>2.2 - 3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago TStart 4/8</td>
<td>6</td>
<td>3.78</td>
<td>0.62</td>
<td>16.5</td>
<td>3.7</td>
<td>3.0 - 4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>16</td>
<td>3.34</td>
<td>0.22</td>
<td>6.5</td>
<td>3.4</td>
<td>2.6 - 4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>26</td>
<td>3.39</td>
<td>0.30</td>
<td>8.8</td>
<td>3.4</td>
<td>2.7 - 4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>2.76</td>
<td>0.46</td>
<td>16.7</td>
<td>2.8</td>
<td>2.2 - 3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>2.68</td>
<td>0.18</td>
<td>6.7</td>
<td>2.8</td>
<td>2.1 - 3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>18</td>
<td>2.76</td>
<td>0.27</td>
<td>9.8</td>
<td>2.7</td>
<td>2.2 - 3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reagent/Instrument</td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>85</td>
<td>2.64</td>
<td>0.57</td>
<td>21.4</td>
<td>2.7</td>
<td>2.1 - 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dade Innovin</td>
<td></td>
</tr>
<tr>
<td>Dade Behring BFT II</td>
<td>5</td>
<td>2.45</td>
<td>0.26</td>
<td>10.8</td>
<td>2.5</td>
<td>1.9 - 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>9</td>
<td>2.06</td>
<td>0.22</td>
<td>10.6</td>
<td>2.1</td>
<td>1.6 - 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>17</td>
<td>2.15</td>
<td>0.26</td>
<td>12.3</td>
<td>2.1</td>
<td>1.7 - 2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diag Stago STA Neoplastine CI+</td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>2.88</td>
<td>0.40</td>
<td>14.0</td>
<td>3.0</td>
<td>2.3 - 3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STart 4/8</td>
<td>5</td>
<td>3.10</td>
<td>0.32</td>
<td>10.2</td>
<td>3.2</td>
<td>2.4 - 3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAL Clot-SP</td>
<td>16</td>
<td>3.01</td>
<td>0.44</td>
<td>14.5</td>
<td>3.1</td>
<td>2.4 - 3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>25</td>
<td>3.01</td>
<td>0.40</td>
<td>13.3</td>
<td>3.1</td>
<td>2.4 - 3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HemosIL RecombiPlasTin 2G</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>2.28</td>
<td>0.43</td>
<td>19.0</td>
<td>2.3</td>
<td>1.8 - 2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT Fibrinogen</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>3.60</td>
<td>0.40</td>
<td>11.1</td>
<td>3.8</td>
<td>2.8 - 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>18</td>
<td>2.69</td>
<td>0.38</td>
<td>14.0</td>
<td>2.8</td>
<td>2.1 - 3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACTIVATED PARTIAL THROMBOPLASTIN (seconds)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Specimen CG-11</th>
<th>Specimen CG-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labs</td>
<td>Mean</td>
</tr>
<tr>
<td>All Method</td>
<td>64</td>
<td>30.1</td>
</tr>
<tr>
<td>Dade Actin FSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sysmex CA-500/600 series</td>
<td>11</td>
<td>24.0</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>13</td>
<td>24.2</td>
</tr>
<tr>
<td>Diagnostica Stago STA C.K. Prest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>6</td>
<td>34.2</td>
</tr>
<tr>
<td>Diagnostica Stago STart 4/8</td>
<td>5</td>
<td>32.8</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>11</td>
<td>33.7</td>
</tr>
<tr>
<td>Hemoliance SynthASil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>5</td>
<td>40.8</td>
</tr>
<tr>
<td>IL TEST APTT-SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>21</td>
<td>29.7</td>
</tr>
</tbody>
</table>
Activated Partial Thromboplastin (seconds)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CG-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>65</td>
<td>29.9</td>
<td>4.1</td>
<td>13.6</td>
<td>30</td>
<td>25 - 35</td>
</tr>
<tr>
<td>Dade Actin FSL</td>
<td>11</td>
<td>24.5</td>
<td>1.2</td>
<td>5.0</td>
<td>25</td>
<td>20 - 29</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>13</td>
<td>24.7</td>
<td>1.3</td>
<td>5.3</td>
<td>25</td>
<td>20 - 29</td>
</tr>
<tr>
<td>Diagnostica Stago STA C.K. Prest</td>
<td>6</td>
<td>34.3</td>
<td>3.0</td>
<td>8.8</td>
<td>33</td>
<td>29 - 40</td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>32.5</td>
<td>2.1</td>
<td>6.4</td>
<td>33</td>
<td>27 - 38</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>11</td>
<td>33.6</td>
<td>2.6</td>
<td>7.7</td>
<td>33</td>
<td>28 - 39</td>
</tr>
<tr>
<td>Hemoliance SynthASil</td>
<td>5</td>
<td>29.5</td>
<td>0.6</td>
<td>2.0</td>
<td>30</td>
<td>25 - 34</td>
</tr>
<tr>
<td>IL TEST APTT-SP</td>
<td>22</td>
<td>30.7</td>
<td>1.4</td>
<td>4.4</td>
<td>31</td>
<td>26 - 36</td>
</tr>
<tr>
<td>Specimen CG-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>63</td>
<td>44.8</td>
<td>4.7</td>
<td>10.6</td>
<td>45</td>
<td>38 - 52</td>
</tr>
<tr>
<td>Dade Actin FSL</td>
<td>11</td>
<td>37.6</td>
<td>4.3</td>
<td>11.5</td>
<td>39</td>
<td>31 - 44</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>12</td>
<td>38.9</td>
<td>1.0</td>
<td>2.6</td>
<td>39</td>
<td>33 - 45</td>
</tr>
<tr>
<td>Diagnostica Stago STA C.K. Prest</td>
<td>6</td>
<td>48.3</td>
<td>3.3</td>
<td>6.8</td>
<td>48</td>
<td>41 - 56</td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>47.3</td>
<td>2.4</td>
<td>5.0</td>
<td>48</td>
<td>40 - 55</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>11</td>
<td>48.1</td>
<td>2.8</td>
<td>5.8</td>
<td>49</td>
<td>40 - 56</td>
</tr>
<tr>
<td>Hemoliance SynthASil</td>
<td>5</td>
<td>43.3</td>
<td>1.9</td>
<td>4.4</td>
<td>43</td>
<td>36 - 50</td>
</tr>
<tr>
<td>IL TEST APTT-SP</td>
<td>22</td>
<td>45.2</td>
<td>2.5</td>
<td>5.5</td>
<td>45</td>
<td>38 - 53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CG-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>57</td>
<td>62.0</td>
<td>10.0</td>
<td>16.2</td>
<td>61</td>
<td>52 - 72</td>
</tr>
<tr>
<td>Dade Actin FSL</td>
<td>10</td>
<td>54.3</td>
<td>3.8</td>
<td>7.1</td>
<td>55</td>
<td>46 - 63</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>12</td>
<td>54.2</td>
<td>3.5</td>
<td>6.4</td>
<td>54</td>
<td>46 - 63</td>
</tr>
<tr>
<td>Diagnostica Stago STA C.K. Prest</td>
<td>6</td>
<td>71.8</td>
<td>8.4</td>
<td>11.6</td>
<td>73</td>
<td>61 - 83</td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>5</td>
<td>62.3</td>
<td>6.7</td>
<td>10.7</td>
<td>59</td>
<td>52 - 72</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>9</td>
<td>68.7</td>
<td>8.8</td>
<td>12.8</td>
<td>70</td>
<td>58 - 79</td>
</tr>
<tr>
<td>Hemoliance SynthASil</td>
<td>5</td>
<td>67.3</td>
<td>8.0</td>
<td>11.9</td>
<td>68</td>
<td>57 - 78</td>
</tr>
<tr>
<td>IL TEST APTT-SP</td>
<td>22</td>
<td>63.0</td>
<td>5.9</td>
<td>9.4</td>
<td>64</td>
<td>53 - 73</td>
</tr>
</tbody>
</table>
FIBRINOGEN (mg/dL)

<table>
<thead>
<tr>
<th>Reagent/Instrument</th>
<th>Specimen CG-11</th>
<th>Specimen CG-12</th>
<th>Specimen CG-13</th>
<th>Specimen CG-14</th>
<th>Specimen CG-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labs</td>
<td>Mean</td>
<td>SD</td>
<td>CV</td>
<td>Median</td>
</tr>
<tr>
<td>All Method</td>
<td>37</td>
<td>430.5</td>
<td>67.2</td>
<td>15.6</td>
<td>441</td>
</tr>
<tr>
<td>Diagnostica Stago STA Fibrinogen</td>
<td>7</td>
<td>407.3</td>
<td>60.0</td>
<td>14.7</td>
<td>411</td>
</tr>
<tr>
<td>Diagnostica Stago STA Compact</td>
<td>10</td>
<td>416.2</td>
<td>51.9</td>
<td>12.5</td>
<td>428</td>
</tr>
<tr>
<td>All Coagulation Instruments</td>
<td>13</td>
<td>446.2</td>
<td>48.9</td>
<td>11.0</td>
<td>435</td>
</tr>
<tr>
<td>IL Fibrinogen-C</td>
<td>8</td>
<td>476.9</td>
<td>39.8</td>
<td>8.3</td>
<td>381</td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>7</td>
<td>407.3</td>
<td>60.0</td>
<td>14.7</td>
<td>411</td>
</tr>
<tr>
<td>IL TEST PT-FIB HS PLUS</td>
<td>7</td>
<td>272.0</td>
<td>38.9</td>
<td>14.3</td>
<td>287</td>
</tr>
<tr>
<td>IL ACL, all models</td>
<td>13</td>
<td>446.2</td>
<td>48.9</td>
<td>11.0</td>
<td>435</td>
</tr>
</tbody>
</table>

Note: Labs, Mean, SD, CV, Median, Range for each test.
URINALYSIS DIPSTICK–SPECIFIC GRAVITY

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Method</td>
<td>394</td>
<td>1.0218</td>
<td>0.0053</td>
<td>0.5</td>
<td>1.020</td>
<td>1.011 - 1.032</td>
</tr>
<tr>
<td>All Arkray Methods</td>
<td>13</td>
<td>1.0265</td>
<td>0.0035</td>
<td>0.3</td>
<td>1.027</td>
<td>1.016 - 1.037</td>
</tr>
<tr>
<td>All DIRUI Methods</td>
<td>21</td>
<td>1.0223</td>
<td>0.0036</td>
<td>0.4</td>
<td>1.020</td>
<td>1.012 - 1.033</td>
</tr>
<tr>
<td>All Iris Diagnostics Methods</td>
<td>15</td>
<td>1.0255</td>
<td>0.0009</td>
<td>0.1</td>
<td>1.025</td>
<td>1.015 - 1.036</td>
</tr>
<tr>
<td>All Refractive Index Methods</td>
<td>36</td>
<td>1.0270</td>
<td>0.0025</td>
<td>0.2</td>
<td>1.027</td>
<td>1.017 - 1.038</td>
</tr>
<tr>
<td>All Roche Methods</td>
<td>136</td>
<td>1.0184</td>
<td>0.0050</td>
<td>0.5</td>
<td>1.015</td>
<td>1.008 - 1.029</td>
</tr>
<tr>
<td>All Siemens Methods</td>
<td>46</td>
<td>1.0209</td>
<td>0.0039</td>
<td>0.4</td>
<td>1.020</td>
<td>1.010 - 1.031</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>15</td>
<td>1.0289</td>
<td>0.0021</td>
<td>0.2</td>
<td>1.029</td>
<td>1.018 - 1.039</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>11</td>
<td>1.0232</td>
<td>0.0033</td>
<td>0.3</td>
<td>1.025</td>
<td>1.013 - 1.034</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>1.0219</td>
<td>0.0032</td>
<td>0.3</td>
<td>1.020</td>
<td>1.011 - 1.032</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>12</td>
<td>1.0256</td>
<td>0.0011</td>
<td>0.1</td>
<td>1.026</td>
<td>1.015 - 1.036</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>13</td>
<td>1.0246</td>
<td>0.0063</td>
<td>0.6</td>
<td>1.025</td>
<td>1.014 - 1.035</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>16</td>
<td>1.0178</td>
<td>0.0041</td>
<td>0.4</td>
<td>1.015</td>
<td>1.007 - 1.028</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>86</td>
<td>1.0167</td>
<td>0.0024</td>
<td>0.2</td>
<td>1.015</td>
<td>1.006 - 1.027</td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>1.0213</td>
<td>0.0065</td>
<td>0.6</td>
<td>1.020</td>
<td>1.011 - 1.032</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>24</td>
<td>1.0258</td>
<td>0.0046</td>
<td>0.4</td>
<td>1.025</td>
<td>1.015 - 1.036</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>32</td>
<td>1.0195</td>
<td>0.0019</td>
<td>0.2</td>
<td>1.020</td>
<td>1.009 - 1.030</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>19</td>
<td>1.0238</td>
<td>0.0023</td>
<td>0.2</td>
<td>1.025</td>
<td>1.013 - 1.034</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>22</td>
<td>1.0245</td>
<td>0.0021</td>
<td>0.2</td>
<td>1.025</td>
<td>1.014 - 1.035</td>
</tr>
</tbody>
</table>
URINALYSIS DIPSTICK–pH

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>≤3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
<th>8.5</th>
<th>≥9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>414</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>292</td>
<td>65</td>
<td>54</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arkay Aution Jet</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arkay Aution Sticks</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arkay PocketChem UA</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HUMAN Combilyzer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Roche Urilux S</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>12</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>URIT Medical Uristest Analyzers</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>URIT Medical Uristest Reagent Strips</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Participant Results

<table>
<thead>
<tr>
<th>pH Value</th>
<th>Labs</th>
<th>≤3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
<th>8.5</th>
<th>≥9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>5.5</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>8.0</td>
<td>≥9.0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

28 /2017 MLE-M3 International Data Supplement
URINALYSIS DIPSTICK–PROTEIN QUALITATIVE

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative</th>
<th>Trace</th>
<th>(1+)</th>
<th>(2+)</th>
<th>(3+)</th>
<th>(4+)</th>
<th>10 - 20 mg/dL</th>
<th>30 - 70 mg/dL</th>
<th>75 mg/dL</th>
<th>100 - 200 mg/dL</th>
<th>>300 - 600 mg/dL</th>
<th>>600 or ≥1000 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>417</td>
<td>410</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77 Elekronika LabUMat/2</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Aeon Laboratories</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Jet</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Sticks</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Arkray PocketChem UA</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>17</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>HUMAN Combilyzer</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>11</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Iris iChem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>9</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>21</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>85</td>
<td>85</td>
<td>-</td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urlux 5</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urisey</td>
<td>47</td>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>23</td>
<td>20</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>7</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>17</td>
<td>16</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>28</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Analyzers</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Reagent Strips</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
URINALYSIS DIPSTICK–GLUCOSE

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative or Normal</th>
<th>Trace</th>
<th>(1+)</th>
<th>(2+)</th>
<th>(3+)</th>
<th>(4+)</th>
<th>30 - 100 mg/dL</th>
<th>150 - 300 mg/dL</th>
<th>500 mg/dL</th>
<th>>500 or ≥1000 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>416</td>
<td>7</td>
<td>18</td>
<td>51</td>
<td>29</td>
<td>17</td>
<td>78</td>
<td>4</td>
<td>45</td>
<td>31</td>
<td>136</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analyticom CombiScan 500</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Arkray Aution Jet</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Sticks</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Arkray PocketChem UA</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>17</td>
<td>1</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HUMAN Combiliyzer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Chemstrips / Combir</td>
<td>20</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>83</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>63</td>
<td>-</td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urilux S</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urisy</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>12</td>
<td>-</td>
<td>2</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>23</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Advantux</td>
<td>36</td>
<td>1</td>
<td>8</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>12</td>
<td>-</td>
<td>5</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Analyzers</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Reagent Strips</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
URINALYSIS DIPSTICK–KETONES

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative</th>
<th>Trace</th>
<th>Small</th>
<th>Moderate</th>
<th>Large (1+)</th>
<th>(2+)</th>
<th>(3+)</th>
<th>(4+)</th>
<th>5 - 10 mg/dL</th>
<th>15 - 25 mg/dL</th>
<th>40 - 60 mg/dL</th>
<th>80 - 100 mg/dL</th>
<th>≥150 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>416</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>54</td>
<td>110</td>
<td>26</td>
<td>1</td>
<td>13</td>
<td>30</td>
<td>147</td>
<td>13</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Arkray Auton Jet</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Auton Sticks</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Arkray PocketChem UA</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>12</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HUMAN Comblyzer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>19</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>86</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Urifest Analyzers</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Urifest Reagent Strips</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2017 MLE-M3 International Data Supplement/ 31
URINALYSIS DIPSTICK–BILIRUBIN

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative</th>
<th>Trace</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
<th>(1+)</th>
<th>(2+)</th>
<th>(3+)</th>
<th>(4+)</th>
<th>0.5 - 1.0 mg/dL</th>
<th>2.0 - 4.0 mg/dL</th>
<th>6.0 - 10.0 mg/dL</th>
<th>>10.0 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>401</td>
<td>399</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Arkay Autoion Jet</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Arkay Autoion Sticks</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Arkay PocketChem UA</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>HUMAN Comblyzer</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics Auto Max AX-4280</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>19</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>85</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>22</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>UritScan Pro/II</td>
<td>17</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>UritScan Reagent Strips</td>
<td>27</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Analyzers</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Reagent Strips</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
URINALYSIS DIPSTICK–UROBILINOGEN

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Normal or 0.0 - 0.2 mg/dL</th>
<th>1.0 or <2.0 mg/dL</th>
<th>2.0/3.0 mg/dL</th>
<th>4.0 or 4.0/6.0 mg/dL</th>
<th>≥8.0 or ≥12.0 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>402</td>
<td>400</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analyticom CombiScan 500</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Jet</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Sticks</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arkray PocketChem UA</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HUMAN Combilyzer</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>19</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>86</td>
<td>86</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>23</td>
<td>22</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>35</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>27</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Analyzers</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Urittest Reagent Strips</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2017 MLE-M3 International Data Supplement/33
Participant Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative</th>
<th>Trace</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
<th>(1+)</th>
<th>(2+)</th>
<th>(3+)</th>
<th>(4+)</th>
<th>(5+)</th>
<th>5 - 25 Erv/μL</th>
<th>50 - 100 Erv/μL</th>
<th>250 mg/dL</th>
<th>≤0.03 mg/dL</th>
<th>0.06 - 0.10 mg/dL</th>
<th>0.2 - 0.5 mg/dL</th>
<th>≥ 1.0 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>412</td>
<td>407</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>15</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Jet</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Arkray Aution Sticks</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Arkray PocketChem UA</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>11</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>HUMAN Combilyzer</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280 Strips</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>18</td>
<td>17</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobs 6500 / u 601</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobs u 411</td>
<td>86</td>
<td>86</td>
<td>-</td>
</tr>
<tr>
<td>Roche Miditron Junior/ll</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>23</td>
<td>22</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>13</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>27</td>
<td>26</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Analyzers</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>URIT Medical Uritest Reagent Strips</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
URINALYSIS DIPSTICK–LEUKOCYTE ESTERASE

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative</th>
<th>Trace</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
<th>(1+)</th>
<th>(2+)</th>
<th>(3+)</th>
<th>(4+)</th>
<th>25 µL</th>
<th>75 or 100 µL</th>
<th>250 or 500 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>400</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>34</td>
<td>38</td>
<td>95</td>
<td>3</td>
<td>8</td>
<td>32</td>
<td>174</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Arkay Aution Jet</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Arkay Aution Sticks</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arkay PocketChem UA</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HUMAN Combilyzer</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>87</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>23</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>6</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Siemens Urilist</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>26</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URIT Medical Urittest Analyzers</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URIT Medical Urittest Reagent Strips</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2017 MLE-M3 International Data Supplement/ 35
URINALYSIS DIPSTICK–NITRITE

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>403</td>
<td>4</td>
<td>399</td>
</tr>
<tr>
<td>77 Elektronika LabUMat/2</td>
<td>16</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>9</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Analyticon CombiScan 500</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Arkray Aution Jet</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Arkray Aution Sticks</td>
<td>9</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Arkray PocketChem UA</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Combi-Screen Test Strips</td>
<td>12</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>16</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>DIRUI H-800 Urine Analyzer</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>HUMAN Combilyzer</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Iris Diagnostics Aution Max AX-4280</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Iris Diagnostics iChem Velocity Strips</td>
<td>12</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Iris Ichem VELOCITY Urine Chemistry System</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>14</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Plasmatec URIPATH</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>19</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Roche cobas 6500 / u 601</td>
<td>9</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>85</td>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>Roche Miditron Junior/II</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Roche Urisys</td>
<td>48</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>SD UroColor Reagent Strips</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Siemens Clinitek 500</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Siemens Clinitek Advantus</td>
<td>36</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>Siemens Clinitek Atlas</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Siemens Clinitek Status / Status+</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Siemens Reagent Strips</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Siemens Uristix</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Urinometer</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>UriScan Pro/II</td>
<td>17</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>UriScan Reagent Strips</td>
<td>27</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>URIT Medical Uritest Analyzers</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>URIT Medical Uritest Reagent Strips</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
URINALYSIS –MICROALBUMIN (dipstick only)

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Negative</th>
<th>10 mg/L</th>
<th>20 mg/L</th>
<th>30 mg/L</th>
<th>50 mg/L</th>
<th>80 mg/L</th>
<th>100 mg/L</th>
<th>150 mg/L</th>
<th>+ (4 - 8 mg/dL)</th>
<th>++ (>8 mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>15</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beckman Coulter ICON microALB</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DIRUI H-100 / H-500 Urine Analyzer</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas u 411</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Micral - 1 minute</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

URINALYSIS –URINE hCG

Specimen UA-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Labs</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>117</td>
<td>-</td>
<td>117</td>
</tr>
<tr>
<td>Acon Laboratories</td>
<td>8</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Alere Acceava hCG-Urine</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Alere Clearview hCG Cassette</td>
<td>15</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Biotron 1-Step</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Medline hCG Test Strip</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Other Analyzer Method</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Other Dipstick Method</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Quidel QuickVue One-Step Combo</td>
<td>19</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Roche Chemstrips / Combur</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>SD Bioline hCG</td>
<td>8</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Stanbio QuStick</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
ANTIMICROBIAL SUSCEPTIBILITY TESTING

Specimen UC-11, CC-11 (SUS-11)

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Labs</th>
<th>S</th>
<th>I</th>
<th>R</th>
<th>Acceptable (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>40</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Amoxicillin/Clavulanate</td>
<td>35</td>
<td>3</td>
<td>-</td>
<td>32</td>
<td>93.75%</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>28</td>
<td>6</td>
<td>1</td>
<td>21</td>
<td>85.90%</td>
</tr>
<tr>
<td>Ampicillin/Sulbactam</td>
<td>18</td>
<td>12</td>
<td>-</td>
<td>6</td>
<td>See footnote¹</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>18</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>95.92%</td>
</tr>
<tr>
<td>Cefacor</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>17</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>81.82%</td>
</tr>
<tr>
<td>Cefepime</td>
<td>32</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>98.75%</td>
</tr>
<tr>
<td>Cefixime</td>
<td>22</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cefoperazone</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>34</td>
<td>32</td>
<td>2</td>
<td>-</td>
<td>93.02%</td>
</tr>
<tr>
<td>Cefotetan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>See footnote¹</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>13</td>
<td>2</td>
<td>-</td>
<td>11</td>
<td>94.92%</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>34</td>
<td>33</td>
<td>-</td>
<td>1</td>
<td>96.77%</td>
</tr>
<tr>
<td>Ceftizoxime</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ungraded²</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>37</td>
<td>37</td>
<td>-</td>
<td>-</td>
<td>96.80%</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>32</td>
<td>25</td>
<td>1</td>
<td>6</td>
<td>See footnote¹</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>Inappropriate drug³</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>49</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>99.50%</td>
</tr>
<tr>
<td>Colistin</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>Inappropriate drug³</td>
</tr>
<tr>
<td>Doripenem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>85.71%</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Inappropriate drug³</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Ungraded²</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>40</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>99.38%</td>
</tr>
<tr>
<td>Imipenem</td>
<td>33</td>
<td>32</td>
<td>1</td>
<td>-</td>
<td>92.50%</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ungraded²</td>
</tr>
</tbody>
</table>

¹ This drug is intrinsically resistant.
² This is an ungraded challenge due to lack of comparison group.
³ This is an inappropriate drug due to discontinued marketing status.
Disk Diffusion

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Labs</th>
<th>S</th>
<th>I</th>
<th>R</th>
<th>Antimicrobial</th>
<th>Labs</th>
<th>S</th>
<th>I</th>
<th>R</th>
<th>Acceptable (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levofloxacin</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>66</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>See footnote</td>
</tr>
<tr>
<td>Meropenem</td>
<td>27</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>104</td>
<td>104</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Minocycline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ungraded</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Inappropriate drug</td>
</tr>
<tr>
<td>Nalidixic Acid</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>35</td>
<td>20</td>
<td>4</td>
<td>11</td>
<td>72</td>
<td>14</td>
<td>49</td>
<td>9</td>
<td>1</td>
<td>82.45%</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>13</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Inappropriate drug</td>
</tr>
<tr>
<td>Penicillin</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Inappropriate drug</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>77</td>
<td>-</td>
<td>1</td>
<td>99.07%</td>
<td></td>
</tr>
<tr>
<td>Rifampin</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Inappropriate drug</td>
</tr>
<tr>
<td>Sulfisoxazole</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ungraded</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Ungraded</td>
</tr>
<tr>
<td>Ticarcillin/Clavulanate</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>83.34%</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Inappropriate drug</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>33</td>
<td>32</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>94.87%</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Trimethoprim/Sulfamethoxazole</td>
<td>41</td>
<td>40</td>
<td>-</td>
<td>1</td>
<td>134</td>
<td>133</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>98.91%</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Inappropriate drug</td>
</tr>
</tbody>
</table>

MIC

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Labs</th>
<th>S</th>
<th>I</th>
<th>R</th>
<th>Acceptable (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levofloxacin</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Meropenem</td>
<td>27</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>104</td>
</tr>
<tr>
<td>Minocycline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nalidixic Acid</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>35</td>
<td>20</td>
<td>4</td>
<td>11</td>
<td>72</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>13</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Penicillin</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>78</td>
</tr>
<tr>
<td>Rifampin</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sulfisoxazole</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Ticarcillin/Clavulanate</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim/Sulfamethoxazole</td>
<td>41</td>
<td>40</td>
<td>-</td>
<td>1</td>
<td>134</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Organism(s) present: *Enterobacter aerogenes.*
PARASITOLOGY (PA Specimens)

Specimen PA-11

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No parasite seen</td>
<td>3</td>
<td>42.86%</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Enterobius vermicularis eggs</td>
<td>2</td>
<td>28.57%</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Schistosoma sp. eggs, NOS</td>
<td>1</td>
<td>14.29%</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>1</td>
<td>14.29%</td>
<td>Unacceptable</td>
</tr>
</tbody>
</table>

Parasite(s) present: *Iodamoeba buetschlii*. This specimen is graded to US statistics.

Specimen PA-12

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No parasite seen</td>
<td>4</td>
<td>50.00%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>2</td>
<td>25.00%</td>
<td></td>
</tr>
<tr>
<td>Balantidium coli</td>
<td>1</td>
<td>12.50%</td>
<td></td>
</tr>
<tr>
<td>Cryptosporidium sp., oocysts</td>
<td>1</td>
<td>12.50%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: No parasite present. This specimen is graded to US statistics.

Specimen PA-13

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongyloides stercoralis larvae</td>
<td>11</td>
<td>84.62%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Ascaris lumbricoides eggs</td>
<td>1</td>
<td>7.69%</td>
<td></td>
</tr>
<tr>
<td>Endolimax nana</td>
<td>1</td>
<td>7.69%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Strongyloides stercoralis larvae*.
PARASITOLOGY (PA Specimens) cont’d

Specimen PA-14

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichuris trichiura eggs</td>
<td>12</td>
<td>70.59%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Endolimax nana</td>
<td>2</td>
<td>11.76%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Parasite egg seen but no ID</td>
<td>1</td>
<td>5.88%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>1</td>
<td>5.88%</td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides eggs</td>
<td>1</td>
<td>5.88%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Trichuris trichiura* eggs, *Endolimax nana* and *Entamoeba hartmanni*.

Specimen PA-15

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypanosoma sp., NOS</td>
<td>6</td>
<td>60.00%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Trypanosoma brucei sp.</td>
<td>2</td>
<td>20.00%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td>1</td>
<td>10.00%</td>
<td></td>
</tr>
<tr>
<td>Leishmania sp.</td>
<td>1</td>
<td>10.00%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Trypanosoma brucei rhodesiense*.
PARASITOLOGY (FP Specimens)

Specimen FP-11

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenolepis nana eggs</td>
<td>195</td>
<td>73.58%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Parasite egg seen but no ID</td>
<td>2</td>
<td>0.75%</td>
<td></td>
</tr>
<tr>
<td>Hymenolepis diminuta eggs</td>
<td>30</td>
<td>11.32%</td>
<td></td>
</tr>
<tr>
<td>Taenia sp. eggs</td>
<td>11</td>
<td>4.15%</td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides eggs</td>
<td>8</td>
<td>3.02%</td>
<td></td>
</tr>
<tr>
<td>No parasite seen</td>
<td>6</td>
<td>2.26%</td>
<td></td>
</tr>
<tr>
<td>Endolimax nana</td>
<td>4</td>
<td>1.51%</td>
<td></td>
</tr>
<tr>
<td>Blastocystis hominis</td>
<td>3</td>
<td>1.13%</td>
<td></td>
</tr>
<tr>
<td>Other parasite seen but no ID</td>
<td>1</td>
<td>0.38%</td>
<td></td>
</tr>
<tr>
<td>Protozoan seen but no ID</td>
<td>1</td>
<td>0.38%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba coli</td>
<td>1</td>
<td>0.38%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>1</td>
<td>0.38%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba hartmanni</td>
<td>1</td>
<td>0.38%</td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>1</td>
<td>0.38%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Hymenolepis nana eggs*.

Specimen FP-12

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No parasite seen</td>
<td>248</td>
<td>97.64%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Strongyloides stercoralis larvae</td>
<td>2</td>
<td>0.79%</td>
<td></td>
</tr>
<tr>
<td>Parasite egg seen but no ID</td>
<td>1</td>
<td>0.39%</td>
<td></td>
</tr>
<tr>
<td>Parasite larvae seen but no ID</td>
<td>1</td>
<td>0.39%</td>
<td></td>
</tr>
<tr>
<td>Nonpath, protozoan present</td>
<td>1</td>
<td>0.39%</td>
<td></td>
</tr>
<tr>
<td>Blastocystis hominis</td>
<td>1</td>
<td>0.39%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: No parasite present.
PARASITOLOGY (FP Specimens) cont’d

Specimen FP-13

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphyllobothrium latum</td>
<td>188</td>
<td>67.38%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Fasciola hepatica eggs</td>
<td>30</td>
<td>10.75%</td>
<td></td>
</tr>
<tr>
<td>Paragonimus westermani eggs</td>
<td>17</td>
<td>6.09%</td>
<td></td>
</tr>
<tr>
<td>Endolimax nana</td>
<td>10</td>
<td>3.58%</td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>8</td>
<td>2.87%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>5</td>
<td>1.79%</td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides eggs</td>
<td>3</td>
<td>1.08%</td>
<td></td>
</tr>
<tr>
<td>Blastocystis hominis</td>
<td>3</td>
<td>1.08%</td>
<td></td>
</tr>
<tr>
<td>Parasite eggs seen but no ID</td>
<td>3</td>
<td>1.08%</td>
<td></td>
</tr>
<tr>
<td>No parasite seen</td>
<td>2</td>
<td>0.72%</td>
<td></td>
</tr>
<tr>
<td>Enterobius vermicularis eggs</td>
<td>2</td>
<td>0.72%</td>
<td></td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Clonorchis sinensis</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba hartmanni</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba coli</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Microfilaria, NOS</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Pollen artifact</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Schistosoma sp. eggs, NOS</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Other parasite seen but no ID</td>
<td>1</td>
<td>0.36%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Diphyllobothrium latum*. This challenge was graded by referee consensus.
PARASITOLOGY (FP Specimens) cont’d

Specimen FP-14

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardia lamblia</td>
<td>249</td>
<td>82.45%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>16</td>
<td>5.30%</td>
<td></td>
</tr>
<tr>
<td>Blastocystis hominis</td>
<td>13</td>
<td>4.30%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba coli</td>
<td>11</td>
<td>3.64%</td>
<td></td>
</tr>
<tr>
<td>Endolimax nana</td>
<td>3</td>
<td>0.99%</td>
<td></td>
</tr>
<tr>
<td>Entamoeba hartmanni</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Enterobius vermicularis eggs</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Chilomastix mesnili</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides eggs</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Hymenolepis nana eggs</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Isospora belli oocysts</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Strongyloides stercoralis larvae</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Trichostrongylus sp. eggs</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Parasite egg seen but no ID</td>
<td>1</td>
<td>0.33%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Giardia lamblia*.
PARASITOLOGY (FP Specimens) cont’d

Specimen FP-15

<table>
<thead>
<tr>
<th>Identification</th>
<th>Labs</th>
<th>Percent</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmodium vivax</td>
<td>171</td>
<td>67.59%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Plasmodium sp., NOS</td>
<td>38</td>
<td>15.02%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Plasmodium sp., not falciparum</td>
<td>8</td>
<td>3.16%</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Plasmodium malariae</td>
<td>12</td>
<td>4.74%</td>
<td></td>
</tr>
<tr>
<td>No parasite seen</td>
<td>8</td>
<td>3.16%</td>
<td></td>
</tr>
<tr>
<td>Plasmodium ovale</td>
<td>7</td>
<td>2.77%</td>
<td></td>
</tr>
<tr>
<td>Plasmodium falciparum</td>
<td>6</td>
<td>2.37%</td>
<td></td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td>1</td>
<td>0.40%</td>
<td></td>
</tr>
<tr>
<td>Leishmania sp.</td>
<td>1</td>
<td>0.40%</td>
<td></td>
</tr>
<tr>
<td>Microfilaria-Loa loa</td>
<td>1</td>
<td>0.40%</td>
<td></td>
</tr>
</tbody>
</table>

Parasite(s) present: *Plasmodium vivax.*
Antinuclear Antibody (ANA) - Qualitative

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-11</th>
<th></th>
<th>Specimen AE-12</th>
<th></th>
<th>Specimen AE-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>17</td>
<td>18</td>
<td>-</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>BioSystems</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Immuno Concepts</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>-</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-14</th>
<th></th>
<th>Specimen AE-15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>BioSystems</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Immuno Concepts</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Antinuclear Antibody (ANA) — Quantitative (Titer)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>N/A</th>
<th>>2560</th>
<th>2048/</th>
<th>1024/</th>
<th>512/</th>
<th>256/</th>
<th>128/</th>
<th>64/</th>
<th>32/</th>
<th>64/</th>
<th>32/</th>
<th>16/</th>
<th>8/</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Specimen AE-11</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Antinuclear Antibody (ANA)—Quantitative (Titer)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>8/10</th>
<th>16/20</th>
<th>32/40</th>
<th>64/80</th>
<th>128/160</th>
<th>256/320</th>
<th>512/640</th>
<th>>640</th>
<th>1024/1280</th>
<th>2048/2560</th>
<th>>2560</th>
<th>N/A (Neg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen AE-12</td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Specimen AE-13</td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Specimen AE-14</td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Specimen AE-15</td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Kallestad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
</tr>
</tbody>
</table>
Anti-dsDNA

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-11</th>
<th></th>
<th>Specimen AE-12</th>
<th></th>
<th>Specimen AE-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>16</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>BioSystems</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Zeus</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Anti-RNP

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-11</th>
<th></th>
<th>Specimen AE-12</th>
<th></th>
<th>Specimen AE-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-14</th>
<th></th>
<th>Specimen AE-15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>
Anti-RNP/Sm

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-11</th>
<th>Specimen AE-12</th>
<th>Specimen AE-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-14</th>
<th>Specimen AE-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

Anti-SSA

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-11</th>
<th>Specimen AE-12</th>
<th>Specimen AE-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-14</th>
<th>Specimen AE-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen AE-15 is an ungraded challenge due to less than 80% participant consensus.
Anti-SSB

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL METHODS</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INOVA Diagnostics</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Anti-SSA/SSB

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL METHODS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPECIMEN AE-14</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>INOVA Diagnostics</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Anti-Sm

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-11</th>
<th></th>
<th>Specimen AE-12</th>
<th></th>
<th>Specimen AE-13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen AE-14</th>
<th></th>
<th>Specimen AE-15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>INOVA Diagnostics</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen AE-12 is an ungraded challenge due to less than 80% participant consensus.
Rubella—Qualitative

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen RU-11</th>
<th></th>
<th></th>
<th></th>
<th>Specimen RU-12</th>
<th></th>
<th></th>
<th></th>
<th>Specimen RU-13</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>19</td>
<td>1</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>12</td>
<td>1</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen RU-14</th>
<th></th>
<th></th>
<th></th>
<th>Specimen RU-15</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>20</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rubella—Quantitative (IU/mL)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen RU-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>24</td>
<td>26.66</td>
<td>17.13</td>
<td>64.2</td>
<td>16.6</td>
<td>0.0 - 78.1</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>13</td>
<td>14.00</td>
<td>1.67</td>
<td>11.9</td>
<td>13.9</td>
<td>8.9 - 19.1</td>
</tr>
<tr>
<td>Specimen RU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>24</td>
<td>0.12</td>
<td>0.19</td>
<td>163.2</td>
<td>0.0</td>
<td>0.0 - 0.7</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>13</td>
<td>0.00</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0 - 0.1</td>
</tr>
<tr>
<td>Specimen RU-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>24</td>
<td>0.12</td>
<td>0.19</td>
<td>163.2</td>
<td>0.0</td>
<td>0.0 - 0.7</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>13</td>
<td>0.00</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0 - 0.1</td>
</tr>
<tr>
<td>Specimen RU-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>24</td>
<td>0.11</td>
<td>0.19</td>
<td>172.0</td>
<td>0.0</td>
<td>0.0 - 0.7</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>13</td>
<td>0.00</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0 - 0.1</td>
</tr>
<tr>
<td>Specimen RU-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>24</td>
<td>41.87</td>
<td>24.62</td>
<td>58.8</td>
<td>27.4</td>
<td>0.0 - 115.8</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>13</td>
<td>23.44</td>
<td>2.55</td>
<td>10.9</td>
<td>23.3</td>
<td>15.7 - 31.1</td>
</tr>
</tbody>
</table>
Syphilis Serology—Qualitative: VDRL Slide

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Method</th>
<th>Reactive</th>
<th>Weakly Reactive</th>
<th>Non-Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY-11</td>
<td>ALL METHODS</td>
<td>41</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Abbott Architect</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BioSystems</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Omega Diagnostics</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plasmatec</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SPINREACT</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard Diagnostics</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wiener Lab</td>
<td>27</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>SY-12</td>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abbott Architect</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BioSystems</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Omega Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plasmatec</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SPINREACT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wiener Lab</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>SY-13</td>
<td>ALL METHODS</td>
<td>41</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Abbott Architect</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BioSystems</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Omega Diagnostics</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plasmatec</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SPINREACT</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard Diagnostics</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wiener Lab</td>
<td>27</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>SY-14</td>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abbott Architect</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BioSystems</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Omega Diagnostics</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plasmatec</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SPINREACT</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard Diagnostics</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wiener Lab</td>
<td>-</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>SY-15</td>
<td>ALL METHODS</td>
<td>42</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Abbott Architect</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BioSystems</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Omega Diagnostics</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plasmatec</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SPINREACT</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard Diagnostics</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wiener Lab</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Syphilis Serology—Quantitative: VDRL Slide Titer

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Specimen SY-11</th>
<th>Specimen SY-12</th>
<th>Specimen SY-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 diis</td>
<td>1 dil</td>
<td>2 dil</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>- -</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>- -</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>- -</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>- -</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>- -</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>- -</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>- -</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>
Syphilis Serology—Quantitative: VDRL Slide Titer

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>0 dils</th>
<th>1 dil</th>
<th>2 dils</th>
<th>4 dils</th>
<th>8 dils</th>
<th>16 dils</th>
<th>32 dils</th>
<th>>32 dils</th>
<th>N/A (Neg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen SY-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>Specimen SY-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>6</td>
<td>19</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
<td>6</td>
<td>15</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Syphilis Serology—Qualitative: MHA-TP

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen SY-11</th>
<th>Specimen SY-12</th>
<th>Specimen SY-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactive</td>
<td>Non-Reactive</td>
<td>Reactive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>18</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Biokit</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Human</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Serodia</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Specimen SY-14</th>
<th>Specimen SY-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactive</td>
<td>Non-Reactive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Biokit</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Human</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Serodia</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Syphilis Serology—Qualitative: *Treponema pallidum* Antibodies

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen SY-11</th>
<th>Specimen SY-12</th>
<th>Specimen SY-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactive</td>
<td>Non-Reactive</td>
<td>Reactive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>47</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Human</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Serodia</td>
<td>13</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen SY-14</th>
<th>Specimen SY-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>-</td>
</tr>
<tr>
<td>Human</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
</tr>
<tr>
<td>Serodia</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>-</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
</tr>
</tbody>
</table>
Syphilis Serology—Qualitative: RPR

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen SY-11</th>
<th>Specimen SY-12</th>
<th>Specimen SY-13</th>
<th>Specimen SY-14</th>
<th>Specimen SY-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactive</td>
<td>Non-Reactive</td>
<td>Reactive</td>
<td>Non-Reactive</td>
<td>Reactive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>87</td>
<td>1</td>
<td>88</td>
<td>86</td>
<td>2</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>BioSystems</td>
<td>14</td>
<td>-</td>
<td>14</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Human</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>14</td>
<td>-</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>17</td>
<td>-</td>
<td>17</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>Pulse Scientific</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>20</td>
<td>1</td>
<td>21</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>85</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syphilis Serology—Quantitative: RPR (Titer)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>>64</th>
<th>N/A (Neg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen SY-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>4</td>
<td>25</td>
<td>34</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BioSystems</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Human</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pulse Scientific</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>-</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Specimen SY-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>74</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>BioSystems</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Human</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Pulse Scientific</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Syphilis Serology—Quantitative: RPR (Titer) cont’d

Specimen/Method	1	2	4	8	16	32	64	>64	N/A	(Neg)
Specimen SY-13										
ALL METHODS	10	40	13	4	2	2	-	-	3	
Becton Dickinson	-	1	-	-	-	-	-	-	-	
bioMerieux	1	2	-	-	-	-	-	-	-	1
BioSystems	1	7	3	-	-	-	-	-	-	1
Human	2	6	-	-	-	-	-	-	-	
Omega Diagnostics	1	6	1	1	1	1	-	-	1	
Plasmatec	2	6	3	1	-	-	-	-	-	
Pulse Scientific	-	-	-	-	-	1	-	-	-	
SPINREACT	3	9	5	1	1	-	-	-	-	
Wiener Lab	-	-	1	-	-	-	-	-	-	
Specimen SY-14										
ALL METHODS	-	-	-	-	-	-	-	-	74	
Becton Dickinson	-	-	-	-	-	-	-	-	1	
bioMerieux	-	-	-	-	-	-	-	-	4	
BioSystems	-	-	-	-	-	-	-	-	12	
Human	-	-	-	-	-	-	-	-	8	
Omega Diagnostics	-	-	-	-	-	-	-	-	12	
Plasmatec	-	-	-	-	-	-	-	-	12	
Pulse Scientific	-	-	-	-	-	-	-	-	1	
SPINREACT	-	-	-	-	-	-	-	-	19	
Wiener Lab	-	-	-	-	-	-	-	-	1	
Syphilis Serology—Quantitative: RPR (Titer) cont’d

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>>64</th>
<th>N/A (Neg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>12</td>
<td>42</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BioSystems</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Human</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Plasmatec</td>
<td>-</td>
<td>9</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pulse Scientific</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPINREACT</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener Lab</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HBc (IgM)

<table>
<thead>
<tr>
<th>Specimen VM-11</th>
<th>Specimen VM-12</th>
<th>Specimen VM-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Vidas</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>VITROS ECi</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>1</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini</td>
<td>-</td>
</tr>
<tr>
<td>Vitas</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>2</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECi</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HBc (Total / IgG)

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen VM-11</th>
<th>Specimen VM-12</th>
<th>Specimen VM-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Equivocal</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vidas</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DiASorin</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>74</td>
<td>3</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vidas</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>DiASorin</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HIV

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen VM-11</th>
<th></th>
<th></th>
<th>Specimen VM-12</th>
<th></th>
<th></th>
<th>Specimen VM-13</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Equivocal</td>
<td>Positive</td>
<td>Negative</td>
<td>Equivocal</td>
<td>Positive</td>
<td>Negative</td>
<td>Equivocal</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td></td>
<td>185</td>
<td>2</td>
<td>1</td>
<td>186</td>
<td></td>
<td>184</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Abbott Architect</td>
<td></td>
<td>65</td>
<td></td>
<td>-</td>
<td>65</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td></td>
<td>1</td>
<td></td>
<td>-</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alere Determine HIV 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/Ab Combo</td>
<td></td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / Dxl</td>
<td></td>
<td>4</td>
<td></td>
<td>-</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidas</td>
<td></td>
<td>11</td>
<td></td>
<td>-</td>
<td>11</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiaSorin</td>
<td></td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td></td>
<td>1</td>
<td></td>
<td>-</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td></td>
<td>38</td>
<td>1</td>
<td>-</td>
<td>39</td>
<td></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td></td>
<td>17</td>
<td>1</td>
<td>-</td>
<td>18</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td></td>
<td>1</td>
<td></td>
<td>-</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td></td>
<td>5</td>
<td></td>
<td>-</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td></td>
<td>10</td>
<td></td>
<td>-</td>
<td>10</td>
<td></td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td></td>
<td>5</td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td></td>
<td>5</td>
<td></td>
<td>-</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VITROS ECi</td>
<td></td>
<td>5</td>
<td></td>
<td>-</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HIV- cont’d

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Alere Determine HIV 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/Ab Combo</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidas</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>DiaSorin</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Human</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HAV (IgM)

<table>
<thead>
<tr>
<th>Specimen VM-11</th>
<th>Specimen VM-12</th>
<th>Specimen VM-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>71</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>VITROS ECi</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECi</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HAV (Total/IgG)

<table>
<thead>
<tr>
<th>Specimen VM-11</th>
<th>Specimen VM-12</th>
<th>Specimen VM-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>1</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – HBeAg

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen VM-11</th>
<th>Specimen VM-12</th>
<th>Specimen VM-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
<td>Negative</td>
<td>Equivocal</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Vidas</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>DiaSorin</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini</td>
<td>-</td>
</tr>
<tr>
<td>Vidas</td>
<td>-</td>
</tr>
<tr>
<td>DiaSorin</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HBs

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen VM-11</td>
<td>Specimen VM-12</td>
<td>Specimen VM-13</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Positive</td>
<td>Negative</td>
<td>Equivocal</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>4</td>
<td>124</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>DiaSorin</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen VM-14	**Specimen VM-15**					
Method	**Positive**	**Negative**	**Equivocal**	**Positive**	**Negative**	**Equivocal**
ALL METHODS	127	-	1	2	126	-
Abbott Architect	48	-	-	-	48	-
Beckman ACCESS / 2 / DxI	3	-	-	-	3	-
bioMerieux Vidas, Mini Vidas	4	-	-	-	4	-
DiaSorin	1	-	-	1	-	-
Roche cobas 6000 / e 601	32	-	1	-	33	-
Roche cobas e 411	12	-	-	-	12	-
Roche Elecsys 1010 / 2010	2	-	-	2	-	
Roche Modular Analytics	3	-	-	3	-	
Siemens ADVIA Centaur	8	-	-	8	-	
VITROS 3600/4600/5600	6	-	-	6	-	
VITROS ECI	3	-	-	3	-	
Viral Markers – HBsAg

<table>
<thead>
<tr>
<th>Specimen VM-11</th>
<th>Specimen VM-12</th>
<th>Specimen VM-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>158</td>
<td>21</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Bio-Rad Evolis</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen VM-14</th>
<th>Specimen VM-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Positive</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>138</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>59</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>1</td>
</tr>
<tr>
<td>Bio-Rad Evolis</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>5</td>
</tr>
<tr>
<td>Bio-Rad Evolis</td>
<td>2</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>33</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>20</td>
</tr>
<tr>
<td>Roche Elecsys 1010 / 2010</td>
<td>1</td>
</tr>
<tr>
<td>Roche Modular Analytics</td>
<td>4</td>
</tr>
<tr>
<td>Siemens ADVIA Centaur</td>
<td>10</td>
</tr>
<tr>
<td>Standard Diagnostics</td>
<td>-</td>
</tr>
<tr>
<td>VITROS 3600/4600/5600</td>
<td>-</td>
</tr>
<tr>
<td>VITROS ECI</td>
<td>-</td>
</tr>
</tbody>
</table>
Viral Markers – Anti-HCV

Specimen VM-11

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>164</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Diasorin</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>1</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen VM-12

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>164</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Diasorin</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>1</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen VM-13

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>45</td>
<td>117</td>
<td>3</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Diasorin</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>13</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Specimen VM-14

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>163</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diasorin</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>32</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen VM-15

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>164</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Diasorin</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>17</td>
<td>-</td>
</tr>
</tbody>
</table>

Specimen VM-16

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL METHODS</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Abbott Architect - Total</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Diasorin</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
Toxoplasma gondii Antibody (IgG) - Qualitative

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen TOX-5</th>
<th>Specimen TOX-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / Dxl</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Toxoplasma gondii Antibody (IgG) —Quantitative (IU/mL)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen TOX-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>23</td>
<td>0.489</td>
<td>1.001</td>
<td>204.7</td>
<td>0.30</td>
<td>0.00 - 2.49</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>12</td>
<td>0.383</td>
<td>0.111</td>
<td>29.1</td>
<td>0.40</td>
<td>0.16 - 0.61</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>4</td>
<td>0.130</td>
<td>0.001</td>
<td>0.0</td>
<td>0.13</td>
<td>0.12 - 0.14</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>3</td>
<td>0.140</td>
<td>0.017</td>
<td>12.4</td>
<td>0.13</td>
<td>0.10 - 0.18</td>
</tr>
<tr>
<td>Specimen TOX-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>21</td>
<td>569.681</td>
<td>318.511</td>
<td>55.9</td>
<td>650.00</td>
<td>0.00 - 1206.71</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>12</td>
<td>510.208</td>
<td>335.845</td>
<td>65.8</td>
<td>477.60</td>
<td>0.00 - 1181.90</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>3</td>
<td>695.933</td>
<td>117.160</td>
<td>16.8</td>
<td>650.00</td>
<td>461.61 - 930.26</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>878.50</td>
<td>0.00 - 1206.71</td>
</tr>
</tbody>
</table>
Toxoplasma gondii Antibody (IgM) - Qualitative

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen TOX-5</th>
<th></th>
<th>Specimen TOX-6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>1</td>
<td>24</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Beckman ACCESS / 2 / DxI</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Toxoplasma gondii Antibody (IgM) — Quantitative (IU/mL)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen TOX-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 All Method</td>
<td></td>
<td>0.137</td>
<td>0.093</td>
<td>67.8</td>
<td>0.10</td>
<td>0.00 - 0.33</td>
</tr>
<tr>
<td>9 Abbott Architect</td>
<td></td>
<td>0.098</td>
<td>0.058</td>
<td>59.8</td>
<td>0.09</td>
<td>0.00 - 0.22</td>
</tr>
<tr>
<td>3 Roche cobas 6000 / e 601</td>
<td></td>
<td>0.250</td>
<td>0.062</td>
<td>25.0</td>
<td>0.23</td>
<td>0.12 - 0.38</td>
</tr>
<tr>
<td>Specimen TOX-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 All Method</td>
<td></td>
<td>9.822</td>
<td>4.931</td>
<td>50.2</td>
<td>6.64</td>
<td>0.00 - 19.69</td>
</tr>
<tr>
<td>9 Abbott Architect</td>
<td></td>
<td>6.322</td>
<td>0.668</td>
<td>10.6</td>
<td>6.41</td>
<td>4.98 - 7.66</td>
</tr>
<tr>
<td>3 Roche cobas 6000 / e 601</td>
<td></td>
<td>15.140</td>
<td>0.772</td>
<td>5.1</td>
<td>15.54</td>
<td>13.59 - 16.69</td>
</tr>
</tbody>
</table>
Cytomegalovirus (CMV) Antibodies (IgG) - Qualitative

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen CMV-5</th>
<th>Specimen CMV-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Cytomegalovirus (CMV) Antibodies (IgG) —Quantitative (U/mL)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CMV-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>17</td>
<td>18.801</td>
<td>14.607</td>
<td>77.7</td>
<td>24.40</td>
<td>0.00 - 48.02</td>
</tr>
<tr>
<td>Specimen CMV-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>17</td>
<td>38.109</td>
<td>16.060</td>
<td>42.1</td>
<td>42.55</td>
<td>5.98 - 70.23</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>10</td>
<td>46.700</td>
<td>8.618</td>
<td>18.5</td>
<td>49.50</td>
<td>29.46 - 63.94</td>
</tr>
</tbody>
</table>
Cytomegalovirus (CMV) Antibodies (IgM) - Qualitative

<table>
<thead>
<tr>
<th>Method</th>
<th>Specimen CMV-5</th>
<th>Specimen CMV-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>ALL METHODS</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>bioMerieux Vidas, Mini Vidas</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Roche cobas 6000 / e 601</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Roche cobas e 411</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Siemens Immulite 2000</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Cytomegalovirus (CMV) Antibodies (IgM) —Quantitative (U/mL)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CMV-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>12</td>
<td>0.197</td>
<td>0.066</td>
<td>33.3</td>
<td>0.21</td>
<td>0.06 - 0.33</td>
</tr>
<tr>
<td>Abbott Architect</td>
<td>8</td>
<td>0.215</td>
<td>0.035</td>
<td>16.3</td>
<td>0.22</td>
<td>0.14 - 0.29</td>
</tr>
</tbody>
</table>

Specimen CMV-6						
All Method	12	0.158	0.054	34.3	0.16	0.04 - 0.27
Abbott Architect	8	0.160	0.043	26.7	0.16	0.07 - 0.25
CK-MB - Quantitative (U/L)

<table>
<thead>
<tr>
<th>Specimen/Method</th>
<th>Labs</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen CK-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>11</td>
<td>52.98</td>
<td>11.06</td>
<td>20.9</td>
<td>48.8</td>
<td>19.8 - 86.2</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>8</td>
<td>52.76</td>
<td>11.74</td>
<td>22.2</td>
<td>49.1</td>
<td>17.5 - 88.0</td>
</tr>
<tr>
<td>Specimen CK-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>11</td>
<td>18.56</td>
<td>2.89</td>
<td>15.6</td>
<td>17.9</td>
<td>9.8 - 27.3</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>8</td>
<td>18.75</td>
<td>3.23</td>
<td>17.2</td>
<td>18.0</td>
<td>9.0 - 28.5</td>
</tr>
<tr>
<td>Specimen CK-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>11</td>
<td>7.83</td>
<td>0.57</td>
<td>7.3</td>
<td>7.9</td>
<td>6.1 - 9.6</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>8</td>
<td>7.78</td>
<td>0.32</td>
<td>4.1</td>
<td>7.9</td>
<td>6.8 - 8.8</td>
</tr>
<tr>
<td>Specimen CK-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>11</td>
<td>27.58</td>
<td>5.20</td>
<td>18.9</td>
<td>28.6</td>
<td>11.9 - 43.2</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>8</td>
<td>26.78</td>
<td>4.58</td>
<td>17.1</td>
<td>27.8</td>
<td>13.0 - 40.6</td>
</tr>
<tr>
<td>Specimen CK-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Method</td>
<td>11</td>
<td>85.79</td>
<td>19.19</td>
<td>22.4</td>
<td>85.7</td>
<td>28.2 - 143.4</td>
</tr>
<tr>
<td>Roche cobas 6000 / c 501</td>
<td>8</td>
<td>82.46</td>
<td>16.95</td>
<td>20.6</td>
<td>88.0</td>
<td>31.6 - 133.4</td>
</tr>
</tbody>
</table>

Medical Laboratory Evaluation
25 Massachusetts Ave NW Ste 700
Washington, DC 20001-7401
800-338-2746 ● 202-261-4500 ● Fax: 202-835-0440
www.acponline.org/mle