You Can’t Always Get Fluoroquinolones

But if you call ID
You just might find
You get what you need

Matthew James Brunner, MD, Jessica Tischendorf, MD, Nasia Safdar, MD, PhD
Background

• Burden of *Clostridium difficile* infection (CDI)

• B27/NAP1 strain and fluoroquinolone

• Approaches to reducing CDI
 – Meta-analysis: restrictive policies decrease CDI
Our Study
Policy: FQL require ID approval on Med/Surg ICU and Transplant

- Quantitative
- 6 mo pre/post
 - Length of Stay
 - Readmission
 - CDI rate
 - FQL use

- Qualitative
 - Goal: Develop model for how antimicrobial decisions are made
 - Effect of current policy
 - Targets for future policies
 - Methods:
 - Interview providers on Target units
 - Organize interview responses within SEIPS framework
Systems Engineering Initiative for Patient Safety (SEIPS)

Figure 1 SEIPS model of work system and patient safety.
Results: Qualitative

12 providers interviewed, approximately 3 months after restriction went into effect

TECHNOLOGY AND TOOLS
- Standardized rounding checklist
- Accessible antibiogram

ORGANIZATION
- Large academic medical center with high-risk populations
- Rate of antimicrobial resistance
- Organizational culture

PERSON
- Provider comfort with antimicrobial prescribing
- Patient factors: Susceptibility profile, comorbidities

ENVIRONMENT
- Availability of pharmacists
- Transfer on FQ from a unit without restrictive policy

TASKS
- Recognizing alternative regimens
- Using FQ as component of broad-spectrum empiric regimen
Antimicrobial Utilization on Pilot Units

- Fluoroquinolone
- Carbapenem
- Cephalosporin - 3rd generation
- Cephalosporin - 4th generation
- Aminoglycoside
- Piperacillin-tazobactam

Intervention
Pre/Post Analysis of Mean Estimates

<table>
<thead>
<tr>
<th>Metric</th>
<th>Transplant Pre</th>
<th>Transplant Post</th>
<th>p-value</th>
<th>Medical-Surgical ICU Pre</th>
<th>Medical-Surgical ICU Post</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readmission rate (%)</td>
<td>23.13</td>
<td>23.30</td>
<td>0.95</td>
<td>1.51</td>
<td>4.20</td>
<td>0.23</td>
</tr>
<tr>
<td>Length of stay, total encounter (patient-days)</td>
<td>6.70</td>
<td>6.40</td>
<td>0.47</td>
<td>12.55</td>
<td>11.91</td>
<td>0.28</td>
</tr>
<tr>
<td>Length of stay, on unit (patient-days)</td>
<td>5.56</td>
<td>5.52</td>
<td>0.90</td>
<td>3.85</td>
<td>3.58</td>
<td>0.18</td>
</tr>
<tr>
<td>HO-CDI per 10,000 patient days</td>
<td>22.94</td>
<td>7.10</td>
<td>0.001</td>
<td>19.59</td>
<td>13.50</td>
<td>0.33</td>
</tr>
<tr>
<td>Fluoroquinolone DOT per 1,000 patient days</td>
<td>72.8</td>
<td>20.0</td>
<td>0.003</td>
<td>115.2</td>
<td>24.7</td>
<td>0.001</td>
</tr>
<tr>
<td>Total antibiotics DOT per 1,000 patient days</td>
<td>309.2</td>
<td>273.7</td>
<td>0.11</td>
<td>510.2</td>
<td>455.0</td>
<td>0.08</td>
</tr>
<tr>
<td>Carbapenem DOT per 1,000 patient days</td>
<td>28.8</td>
<td>25.4</td>
<td>0.60</td>
<td>55.3</td>
<td>63.4</td>
<td>0.56</td>
</tr>
<tr>
<td>Third generation cephalosporins DOT per 1,000 patient days</td>
<td>32.7</td>
<td>61.4</td>
<td>0.006</td>
<td>108.7</td>
<td>122.7</td>
<td>0.29</td>
</tr>
<tr>
<td>Fourth generation cephalosporins DOT per 1,000 patient days</td>
<td>43.8</td>
<td>17.4</td>
<td>0.03</td>
<td>115.8</td>
<td>29.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Aminoglycoside DOT per 1,000 patient days</td>
<td>13.7</td>
<td>9.1</td>
<td>0.06</td>
<td>11.7</td>
<td>17.6</td>
<td>0.33</td>
</tr>
<tr>
<td>Piperacillin DOT per 1,000 patient days</td>
<td>117.3</td>
<td>140.3</td>
<td>0.29</td>
<td>219.3</td>
<td>226.6</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Time Series analysis showed increase in HO-CDI in post-intervention period.

Hospital Acquired Cases of Clostridium difficile Infection

- Pre: 15 total
- Post: 11 total

Legend:
- Transplant unit
- Intensive care unit
Conclusions

Qualitative

Quantitative

Future directions
Acknowledgments

• Nasia Safdar MD, PhD
• Jessica Tischendorf MD
• Mary Jo Knobloch PhD
• Lucas Schulz RPh
• Anna Barker, BS
References

