Practical aspects of using DOACs (Direct Oral Anticoagulants)

James L. Sebastian, MD, MACP
Professor of Medicine (GIM)
Medical College of Wisconsin
September 12, 2015

What’s in a name?

- **DOAC**: Direct oral anticoagulant
- **NOAC**: Non-VKA oral anticoagulant
- **NOAC**: Novel/new oral anticoagulant
- **ODI**: Oral direct inhibitors
- **SODA**: Specific oral direct anticoagulant
- **TSOAC**: Target specific oral anticoagulant

What’s in a name?
That which we call a rose, By any other name...

What’s in a name?

DOAC **DO....Anti-Coagulate**

NOAC **NO....Anti-Coagulation**

Outline of today’s talk

Practical aspects of using DOACs in clinical practice

- General overview
- Patient selection – Warfarin vs. DOAC
- Monitoring treatment
- Bridging and peri-procedural management
- Managing serious DOAC-related bleeding
- Reversal agents
General overview

Coagulation Cascade

Intrinsic pathway
Vascular surface changes

Extrinsic pathway
Tissue thromboplastin

Common pathway
Prothrombin (II)
Thrombin

Fibrinogen (I) → Fibrin monomer → Fibrin polymer → Stable fibrin

Am Fam Physician 2001; 64: 419-428
Advantages of DOACs compared to Warfarin

- Rapid onset
- Short half-life (rapid offset)
- Predictable pharmacokinetics
- Fewer drug interactions
- Lack of need for routine monitoring

Disadvantages of DOACs compared to Warfarin

• Difficult to monitor compliance

• No reliable, clinically available blood test to determine drug levels

• Drug accumulates with renal impairment

• No specific antidote to reverse anticoagulant effect

Patient selection

Which patients who require long-term anticoagulation should be treated with a DOAC?
Current FDA-approved indications

<table>
<thead>
<tr>
<th>DOAC</th>
<th>VTE prevention</th>
<th>VTE treatment</th>
<th>ACS</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Apixaban</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

DOAC vs. Warfarin Stroke or Systemic Embolism

![Graph showing comparison of DOAC vs. Warfarin for stroke or systemic embolism events](image)

Figure 1: Stroke or systemic embolic events
Data are n/N, unless otherwise indicated. Heterogeneity: I² = 47%; p = 0.13. NOAC = new oral anticoagulant; RR = risk ratio. *Dabigatran 150 mg twice daily; †Rivaroxaban 20 mg once daily; ‡Apixaban 5 mg once daily; §Edoxaban 60 mg once daily.

Lancet 2014; 383:955-962
DOAC vs. Warfarin
Major Bleeding Events

<table>
<thead>
<tr>
<th></th>
<th>NOAC (events)</th>
<th>Warfarin (events)</th>
<th>RR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-LY 2</td>
<td>375/6076</td>
<td>396/6022</td>
<td>0.94 (0.92-1.07)</td>
<td>.34</td>
</tr>
<tr>
<td>ROCKET AF</td>
<td>395/7211</td>
<td>386/7235</td>
<td>1.09 (0.96-1.30)</td>
<td>.072</td>
</tr>
<tr>
<td>ARISTOTLE</td>
<td>327/9196</td>
<td>460/955</td>
<td>0.75 (0.65-0.85)</td>
<td><.0001</td>
</tr>
<tr>
<td>ENGAGE-AF-TIMI 48</td>
<td>444/7012</td>
<td>557/7032</td>
<td>0.80 (0.71-0.90)</td>
<td><.0012</td>
</tr>
<tr>
<td>(combined random)</td>
<td>1542/29287</td>
<td>13802/29221</td>
<td>0.86 (0.79-1.01)</td>
<td>.05</td>
</tr>
</tbody>
</table>

Figure 3: Major bleeding
Data are n/N, unless otherwise indicated. Heterogeneity: F=23%; p=0.001. NOAC: new oral anticoagulant. RR: risk ratio. *Dabigatran: 150 mg twice daily. **Rivaroxaban: 20 mg once daily. ***Apixaban: 5 mg twice daily. ****Edoxaban: 60 mg once daily.

Lancet. 2014; 383:955-962

DOAC Trials: Pooled Analysis
Efficacy and Safety

<table>
<thead>
<tr>
<th></th>
<th>RR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic stroke</td>
<td>0.92 (0.83-1.02)</td>
<td>.10</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>0.49 (0.38-0.64)</td>
<td><.0001</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>0.90 (0.85-0.95)</td>
<td>.003</td>
</tr>
<tr>
<td>ICH</td>
<td>0.48 (0.39-0.59)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Lancet. 2014; 383:955-962
Patients who should **NOT** be treated with a DOAC

- Problems with adherence
- Kidney disease
- Mechanical heart valves

Dosing and Therapeutic Compliance

Averaged from 76 studies using electronic monitoring

<table>
<thead>
<tr>
<th>Dosing</th>
<th>Took Most Doses</th>
<th>Took Doses on Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 time daily</td>
<td>79%</td>
<td>74%</td>
</tr>
<tr>
<td>2 times daily</td>
<td>69%</td>
<td>58%</td>
</tr>
<tr>
<td>3 times daily</td>
<td>65%</td>
<td>46%</td>
</tr>
<tr>
<td>4 times daily</td>
<td>51%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Am J Cardiol 2010; 105: 1495-1501
Using DOACs in patients with chronic kidney disease

- **Creatinine clearance < 30 ml/min**
 - DOACs should generally be avoided.

- **Creatinine clearance between 30-50 ml/min**
 - Preference for factor Xa inhibitors over direct thrombin inhibitors (dabigatran)

- **Creatinine clearance > 95 ml/min**
 - Black box warning cautions against use of edoxaban due to reduced efficacy

Ann Intern Med 2015; 163; 382-385

DOACs should NOT be used in pts with mechanical heart valves

Ischemic or unspecified stroke occurred in 9 patients (5%) in the dabigatran group and no patients in the warfarin group.

DOACs should NOT be used in pts with mechanical heart valves

All patients with major bleeding had pericardial bleeding

Poorly studied patient groups

- Children
- Very elderly
- Pregnancy
- Cancer patients
Monitoring treatment

Do patients receiving DOACS need to be monitored?
How to monitor patients receiving DOACs
How to monitor patients receiving DOACs

• Adherence with DOAC therapy
 • One or more missed doses in an average week

• Bleeding risk assessment
 • Does not imply that DOAC should be discontinued

• Renal function
 • GFR less than 50 ml/min
 • Use of diuretics or recent dehydrating illness

How to monitor patients receiving DOACs

• Drug interactions
 • Concomitant use of ASA, anti-platelets, NSAIDS

• Physical exam
 • Blood pressure (too high or too low)
 • Gait impairment, assessment of fall risk

• Patient education and counseling
 • Dosing for scheduled procedures/surgeries

Ann Intern Med 2015; 163: 382-385
Laboratory measurement in patients receiving DOACs

Dabigatran

- Normal thrombin time (TT) excludes clinically relevant drug levels.
- Dilute TT and ecarin-based assays can be used for quantification across a broad range of drug levels.
- Normal aPTT excludes excess drug levels.

Factor Xa Inhibitors

- Normal anti-Xa level excludes clinically relevant drug levels.
- Anti-Xa can be used for quantification across a broad range of drug levels.
- Normal PT excludes excess drug levels of rivaroxaban and edoxaban but not apixaban.
Bridging and peri-procedural management

BRIDGE Trial – Study Design

- Randomized, double-blind, placebo-controlled
- 1884 patients with AF scheduled to undergo an elective operation or invasive procedure
- Warfarin stopped 5 days before procedure and resumed 24 hours after procedure
- 30 days post-procedure follow-up for primary outcome of arterial thromboembolism or major bleeding.

BRIDGE Trial- Treatment Group

- Subcutaneous dalteparin 100 IU twice/daily
- LMWH started 3 days before procedure and discontinued 24 hours before procedure
- LMWH resumed 24 hours (low risk procedure) or 48-72 hours (high risk procedure)
- LMWH continued 5-10 days post procedure

BRIDGE Trial- Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No Bridging (N=918)</th>
<th>Bridging (N=895)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number of patients</td>
<td>percent</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial thromboembolism</td>
<td>4 (0.4)</td>
<td>3 (0.3)</td>
<td>0.01*, 0.73†</td>
</tr>
<tr>
<td>Stroke</td>
<td>2 (0.2)</td>
<td>3 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Transient ischemic attack</td>
<td>2 (0.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Systemic embolism</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>12 (1.3)</td>
<td>29 (3.2)</td>
<td>0.005†</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>5 (0.5)</td>
<td>4 (0.4)</td>
<td>0.88†</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>7 (0.8)</td>
<td>14 (1.6)</td>
<td>0.10†</td>
</tr>
<tr>
<td>Deep-vein thrombosis</td>
<td>0</td>
<td>1 (0.1)</td>
<td>0.25†</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>0</td>
<td>1 (0.1)</td>
<td>0.25†</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>110 (12.0)</td>
<td>187 (20.9)</td>
<td><0.001†</td>
</tr>
</tbody>
</table>

*P<0.05, †P<0.01

N Engl J Med 2015; 373: 823-833
Example of a pre-operative management strategy for patients receiving Rivaroxaban

Minor surgery/procedure (Low bleeding risk)

• CrCl \(\geq \) 50 ml/min: Hold 1 day before – 1 dose
• CrCl \(< 50\) ml/min: Hold 1-2 days before – 1-2 doses

Major surgery/(High bleeding risk)

• CrCl \(\geq \) 50 ml/min: Hold 1-2 days before – 1-2 doses
• CrCl \(< 50\) ml/min: Hold 2-3 days before – 2-3 doses

May not be applicable to all patients including those undergoing neuraxial anesthesia

Example of a post-operative management strategy for patients receiving Rivaroxaban

Minor surgery/procedure (Low bleeding risk)

• Resume 12-24 hours after procedure once adequate hemostasis has been achieved

Major surgery/(High bleeding risk)

• Resume 48-72 hours after procedure once adequate hemostasis has been achieved
Managing serious DOAC-related bleeding

Major bleeding case fatality rates

<table>
<thead>
<tr>
<th></th>
<th>Warfarin</th>
<th>DOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>55/386</td>
<td>14%</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>53/407*</td>
<td>13%</td>
</tr>
<tr>
<td>Apixaban</td>
<td>55/462</td>
<td>12%</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>59/524</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Case Fatality Rates in Patients with Major Bleeding – Warfarin vs. DOAC

Approach to patients with DOAC-related major bleeding

Initial assessment

- Hemodynamic stability
- Source of bleeding
- Time elapsed since last dose
- Renal function
- Baseline coagulation testing

J Thromb Thrombolysis 2013; 35: 391-398
Approach to patients with DOAC-related major bleeding

General measures

• Anticoagulant withdrawal
• Mechanical compression of bleeding site
• Monitor hemodynamic status
• Volume replacement
• Definitive interventions
• Oral charcoal if dabigatran ingestion ≤ 2 hrs.

J Thromb Thrombolysis 2013; 35: 391-398

Blood product transfusion

• RBC transfusion for anemia
• Consider platelets if patient receiving an anti-platelet agent
• FFP for coagulopathy (DIC, dilutional coagulopathy)

J Thromb Thrombolysis 2013; 35: 391-398
Approach to patients with DOAC-related major bleeding

Severe/life-threatening bleeding

- Intensive care setting
- Hemodynamic support
- Consider 4-factor PCC (50 U/kg) for Factor Xa inhibitors or activated PCC (80 U/kg) for DTI

Adjunctive therapies

- Hemodialysis for dabigatran removal
- Desmopressin, anti-fibrinolytic agents (?)

Reversal strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-specific</td>
<td></td>
</tr>
<tr>
<td>Activated charcoal</td>
<td>Decontamination</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>Accelerated elimination (only for dabigatran)</td>
</tr>
<tr>
<td>PCC</td>
<td>Replacement of factors II, VII, IX, X</td>
</tr>
<tr>
<td>rVIIa, aPCC</td>
<td>Activated coagulation factors</td>
</tr>
<tr>
<td>PER977</td>
<td>Small synthetic molecule</td>
</tr>
<tr>
<td>Specific</td>
<td></td>
</tr>
<tr>
<td>Idarucizumab</td>
<td>Monoclonal antibody against dabigatran</td>
</tr>
<tr>
<td>Andexanet</td>
<td>Recombinant inactive FXa</td>
</tr>
</tbody>
</table>

What’s on the horizon?

Idarucizumab

poke me.

i dare you.
Idarucizumab for Dabigatran Reversal

Idarucizumab completely reversed the anticoagulant effect of dabigatran within minutes.

N Engl J Med 2015; 373; 511-520

Resources
Anticoagulation Forum’s Centers of Excellence - Resource Center

- Drug therapy management
- Disease state management
- Transition and coordination of care
- Service operational performance
- Patient and family education
- Comprehensive toolkit
- Apps for practitioner
- Additional resources
Anticoagulation Forum’s Centers of Excellence - Resource Center

excellence.acforum.org