Non Exertional Heat Stroke and Elevated Troponin

Maria Batool M.D
Anushree Agarwal M.D
Krishna Nagendren M.D
Aurora Health Care Internal Medicine Residency Program
51 year old female admitted to the ER

c/c: Altered mental status

HPI: Patient was living in a old house with no central air conditioning and was reportedly doing well until the day before

PMH:
* Diabetes
* Asthma
* Well-controlled HTN
* Bipolar disorder
* Schizophrenia
Further History

* Social History:
 * No alcohol or drug use

* Medications:
 * Valsartan
 * Metoprolol
 * Metformin
 * Quetiapine
 * Lithium
 * Fluphenazine
* **BP**: 129/65 mmHg
* **PULSE**: 96/min
* **RR**: 22/min
* **FiO2**: 60%
* **TEMP**: 108.1 Fahrenheit !!!! (rectal)
Obese female, intubated and sedated

Pupils 2 mm size and sluggishly reactive to light

No muscle rigidity

Reflexes hypoactive

Otherwise normal exam
Lab Data

CBC
- **BNP:** 156
- **Myoglobin:** 232 ng/ml
- **CK-MB:** 1.6 ng/ml

BMP
- **CPK:** 96 units/L
- **Troponin:** 0.16 ng/ml
- **UDS:** negative
Initial EKG showed sinus tachycardia with non-specific T wave abnormality in the anterior leads.

Subsequent EKG showed normal sinus rhythm.
Heat Stroke

- Temp > 40°C
- CNS Dysfunction

- Exertional
- Non Exertional

- Cooling Measures
- Hemodynamic Support
Pathophysiology

- Increased Temperature + Thermoregulatory Failure
 - Multi-organ dysfunction
 - Increased rate of enzymatic reactions
 - Tissue ischemia
 - Cellular denaturation/death
Clinical Presentation

PHYSICAL FINDINGS

- Flushing (cutaneous vasodilation)
- Tachypnea
- Excessive bleeding
- Altered mentation or seizures

LAB FINDINGS

- Leukocytosis
- Hemo concentration
- Evidence of DIC
- Hypokalemia/hyperkalemia
- Lactic acidosis
- Elevated transaminases
Back to the patient.....

- Cooling blankets, infusion of cold saline and aggressive hydration
- Extubated within 48 hours
- Continued to have confusion and agitation - treated with Haldol and Lorazepam
- Troponin continued to trend up in spite of overall improvement
Troponin Level

<table>
<thead>
<tr>
<th>Date</th>
<th>cTnI (ng/ml)</th>
<th>Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Jul</td>
<td>0.16</td>
<td>2</td>
</tr>
<tr>
<td>20-Jul</td>
<td>3.39</td>
<td>2.4</td>
</tr>
<tr>
<td>21-Jul</td>
<td>12.38</td>
<td>1.8</td>
</tr>
<tr>
<td>22-Jul</td>
<td>11.15</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>6.28</td>
<td></td>
</tr>
</tbody>
</table>
Temperature

<table>
<thead>
<tr>
<th>Date</th>
<th>Temp(F)</th>
<th>CPK - units/ L</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Jul</td>
<td>108.1</td>
<td></td>
</tr>
<tr>
<td>20-Jul</td>
<td>105</td>
<td>102.5</td>
</tr>
<tr>
<td>21-Jul</td>
<td>101.8</td>
<td>96</td>
</tr>
</tbody>
</table>
Mechanism of Troponin Elevation

* Increased cardiac output (cardiac output increases about 3 L/min for each 1°C)
* Severe sepsis-like syndrome
* Neural mediation
* Ventricular strain
* Coronary endothelial dysfunction
Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heatwave

Pierre Hausfater*1, Benoît Doumenc2, Sébastien Chopin1, Yannick Le Manach3, Aline Santin4, Sandrine Dautheville5, Anabela Patzak6, Philippe Hericord7^, Bruno Mégarbane8, Marc Andronikof9, Nabila Terbaoui10 and Bruno Riou1,3
* Very few case reports about troponin elevation and its significance in heat stroke, especially non-exertional heat stroke

* Troponin levels significantly elevated in non-survivors of heat stroke (1) (7.4 vs 1.1 ng.mL\(^{-1}\), \(P < 0.01\))

* No reports, to our knowledge, of cardiac catheterization demonstrating normal coronary arteries in patients of heat stroke

Patient Course

* Patient started on ACS protocol

* Cardiology consulted

* 2D –ECHO - Normal

* Cardiac catheterization - Clean coronaries
Conclusion

* Troponin elevation is an independent adverse prognostic factor in heat stroke(1)
* Troponin elevation in heatstroke patients is rarely related to anatomic coronary lesions
* Severe increases in troponin (> 1.5 ng /ml) indicate severe myocardial damage(1)
* Early identification of prognostic variables in the ER is essential to determining the therapeutic priorities

References

Thank you!