HEMATOLOGY
CLINICAL PEARLS

Rakhi Naik, MD, MHS
Assistant Professor of Medicine & Oncology, Division of Hematology

JOHNS HOPKINS SCHOOL of MEDICINE
Disclosures

None
Case #1

A 21-year-old Greek female presents to her PCP for establishment of care. She reports 3 months of progressive fatigue but has no other complaints. Family history is notable for anemia in her mother and older sister. Past medical history is positive for mild persistent asthma.

Her CBC reveals:

WBC 6.8 (normal 4.5-11.0 k/cu mm)
Hemoglobin 8.9 (normal 12-15 g/dL)
RDW 20.5 (11.5-15.4%)
Platelets 483 (normal 150-350 k/cu mm)
Case #1

- Which of the following tests is the most appropriate to diagnose the etiology of her anemia?

 - A) Iron studies (iron, TIBC, ferritin)
 - B) Erythrocyte sedimentation rate (ESR)
 - C) Hemoglobin electrophoresis
 - D) JAK2 mutational analysis
 - E) Bone marrow biopsy
Case #1

Which of the following tests is the most appropriate to diagnose the etiology of her anemia?

A) Iron studies (iron, TIBC, ferritin)
B) Erythrocyte sedimentation rate (ESR)
C) Hemoglobin electrophoresis
D) JAK2 mutational analysis
E) Bone marrow biopsy
Microcytic Anemias

1. Iron deficiency
2. Anemia of chronic Disease (ACD), especially with severe inflammation/functional iron deficiency
3. Thalassemia – impaired production of either beta or alpha globin chains resulting in low hemoglobin production
4. Sideroblastic anemia (rare)
Important Indices in Microcytic Anemias

- **MCV** – Mean corpuscular volume (normal 80-100 fL)
 - Volume of PRBC/RBC count
 - Defines anemia as either microcytic (<80 fL), normocytic (80-100 fL), or macrocytic (>100 fL)
 - Contrary to popular belief, it is not a reliable marker to distinguish iron deficiency from thalassemia

- **RDW** – RBC distribution width (12 -15.5%)
 - Coefficient of variation of RBC volume
 - Indicates the variability in RBC size so is high in low iron states

- **Platelet count** (150-350 k/cu mm)
 - Can be elevated in iron deficiency (unclear mechanism) and ACD (inflammation)
Iron Studies in Microcytic Anemias

- **Percent transferrin saturation**
 - Ratio of serum iron to TIBC plasma
 - Measure of bound transferrin, which is the iron transporter protein
 - Carries less than 1% of total body iron

- **TIBC (total iron binding capacity)**
 - Indirect measure of transferrin

- **Ferritin**
 - Intracellular storage of iron
 - Only cause of low ferritin is IRON DEFICIENCY

<table>
<thead>
<tr>
<th>Iron indices</th>
<th>Iron deficiency</th>
<th>ACD</th>
<th>Thalassemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Low</td>
<td>Low</td>
<td>Normal/high</td>
</tr>
<tr>
<td>TIBC</td>
<td>High/normal</td>
<td>Low/normal</td>
<td>Normal</td>
</tr>
<tr>
<td>% saturation</td>
<td>Low</td>
<td>Low</td>
<td>Normal/high</td>
</tr>
<tr>
<td>Ferritin</td>
<td>Low</td>
<td>High</td>
<td>Normal/high</td>
</tr>
</tbody>
</table>
Marked hypochromasia, microcytosis
Case #2

An 83 year old male patient is followed in your clinic for iron deficiency anemia. Last year, he underwent an extensive GI evaluation with EGD, colonoscopy, and capsule study which revealed multiple small bowel AVMs. Over the past year, he has been taking TID oral iron supplementation and has required 3 hospitalizations for symptomatic anemia requiring transfusion. His last transfusion of PRBCs was 1 week ago.

His labs reveal:
Hemoglobin 10 (normal 13-17 g/dL)
MCV 83.2 (normal 80-100 fL)
Serum Iron 53 (normal 50-170 mcg/dL)
% Saturation 20 (normal 20-38 %)
Ferritin 3 (normal 10-300 ng/mL)
Case #2

Which of the following is the most appropriate next step in management?

- A) Increase oral iron supplementation to QID dosing
- B) Initiate iv iron therapy
- C) Order scheduled q4 month transfusions
- D) Send anti-tissue transglutaminase Abs
- E) Obtain a repeat colonoscopy
- F) Perform a bone marrow biopsy
Case #2

Which of the following is the most appropriate next step in management?

- **A) Increase oral iron supplementation to QID dosing**
- **B) Initiate iv iron therapy**
- **C) Order scheduled q4 month transfusions**
- **D) Send anti-tissue transglutaminase Abs**
- **E) Obtain a repeat colonoscopy**
- **F) Perform a bone marrow biopsy**
TABLE 1. CAUSES OF IRON DEFICIENCY.

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate absorption</td>
<td>Poor bioavailability, antacid therapy or high gastric pH, excess dietary bran, tannin, phytates, or starch, competition from other metals (e.g., copper or lead)</td>
</tr>
<tr>
<td>Loss or dysfunction of absorptive enterocytes</td>
<td>Bowel resection, celiac disease, inflammatory bowel disease, intrinsic enterocyte defects</td>
</tr>
<tr>
<td>Increased loss</td>
<td>Gastrointestinal blood loss: epistaxis, varices, gastritis, ulcer, tumor, Meckel’s diverticulum, parasitosis, milk-induced enteropathy of early childhood, vascular malformations, inflammatory bowel disease, diverticulosis, hemorrhoids.</td>
</tr>
<tr>
<td>Genitourinary blood loss</td>
<td>Menorrhagia, cancer, chronic infection</td>
</tr>
<tr>
<td>Pulmonary blood loss</td>
<td>Pulmonary hemosiderosis, infection</td>
</tr>
<tr>
<td>Other blood loss</td>
<td>Trauma, excessive phlebotomy, large vascular malformations</td>
</tr>
<tr>
<td>Iron supplement group</td>
<td>Generic or brand name</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Ferrous salts</td>
<td>Ferrous sulfate</td>
</tr>
<tr>
<td>Ferrous fumarate</td>
<td>Ferrous fumarate</td>
</tr>
<tr>
<td>Ferrous gluconate</td>
<td>Ferrous gluconate</td>
</tr>
<tr>
<td>Controlled-release</td>
<td>Slow FE (Novartis)</td>
</tr>
<tr>
<td></td>
<td>Ferro-Grad-500 (Abbott)</td>
</tr>
<tr>
<td>Polysaccharide-iron complex</td>
<td>Niferex-150 (Schwarz Pharma)</td>
</tr>
<tr>
<td>Carbonyl iron</td>
<td>Fecosol (SmithKline Beecham)</td>
</tr>
</tbody>
</table>

*2001 Drug Topics, Red Book. Daily dosages given here deliver 150 to 210 mg of elemental iron and are for comparison of average costs. Actual dosage should be adjusted according to the calculated need for iron replacement and the results of laboratory monitoring.
Indications for iv Iron

• Failure of oral iron from GI intolerance
• Failure of oral iron due to absorption issues
 ➢ H pylori infection, autoimmune gastritis, celiac disease, gastric bypass surgery, inflammatory bowel disease
• Anemia with chronic renal disease (with or without[?] dialysis dependance)
• Heavy ongoing GI or menstrual blood losses

Bastit et al JCO 26: 1511-1618 2008
Henry et al The Oncologist 2007;12:231–242
<table>
<thead>
<tr>
<th></th>
<th>Lmw Iron Dextran</th>
<th>Iron Sucrose</th>
<th>Ferric Gluconate</th>
<th>Ferumoxytol</th>
<th>Ferric Carboxy maltose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administered Dosage</td>
<td>100mg</td>
<td>200 mg</td>
<td>125 mg</td>
<td>510mg</td>
<td>750mg</td>
</tr>
<tr>
<td>Total Dose Infusion</td>
<td>1000 mg</td>
<td>no</td>
<td>no</td>
<td>1020 mg 3d apart</td>
<td>1500mg 7d apart</td>
</tr>
<tr>
<td>Cost</td>
<td>Inexpensive</td>
<td>Inexpensive</td>
<td>Inexpensive</td>
<td>Expensive</td>
<td>Expensive</td>
</tr>
<tr>
<td>Indication</td>
<td>IDA</td>
<td>IDA in CKD</td>
<td>IDA in CKD/HD +epo</td>
<td>IDA in CKD</td>
<td>IDA + IDA in CKD</td>
</tr>
<tr>
<td>Test dose</td>
<td>Yes</td>
<td>none</td>
<td>none</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Administration</td>
<td>Iv (preferred) or im</td>
<td>Iv push or 15m infusion</td>
<td>i.v push or 1hr infusion</td>
<td>17s i.v push or 15 m infusion</td>
<td>7.5 m iv push or 15 m infusion</td>
</tr>
</tbody>
</table>
Case #3

A 65 year-old male patient of yours presents to clinic for follow-up after a recent hospitalization for acute gastroenteritis. He has no past medical history and reports that he has been feeling much better after discharge. In the hospital, an conscientious resident sent an SPEP which revealed a 0.24 g/dL IgG-kappa M-spike.

You send additional labs which reveal a normal CBC and CMP. Kappa/lambda light chain (LC) studies show a kappa LC level of 18.3 (normal 3.3-19.4 mg/L), lambda LC level of 13.0 (normal 5.7-26.3 mg/L), and a normal ratio of 1.4 (normal 0.26-1.65).
Case #3

- What is the appropriate next step in management of this patient?

- A) Bone marrow biopsy
- B) Skeletal survey
- C) Small bowel biopsy for amyloidosis
- D) Yearly monitoring for symptoms and labs
- E) No further work-up
Case #3

What is the appropriate next step in management of this patient?

- A) Bone marrow biopsy
- B) Skeletal survey
- C) Small bowel biopsy for amyloidosis
- D) Yearly monitoring for symptoms and labs
- E) No further work-up
Tests for Workup for MGUS

- Immunoglobulin quantification
 - Will see reciprocal depression in more advanced cases
- Serum protein electrophoresis (SPEP)
 - Used to quantify an M-spike
 - Can be negative in light chain only disease
- Serum IFE (immunofixation electrophoresis)
 - Will tell you the type of immunoglobulin (IgG, IgA, IgM)
 - Can also detect the corresponding light chain but may also miss light chain only disease
- Kappa/lambda light chains
 - Should be sent with any MGUS to quantify free light chains
 - UPEP/IFE usually sent if ratio is abnormal to look for Bence Jones proteinuria (free light chains in the urine)
- Skeletal survey
 - Can be deferred in low risk MGUS unless symptomatic
Who will transform to Myeloma?

Risk higher if:

1. Larger M-spike (＞1.5g/dL)
2. Non IgG (IgM or IgA)
3. Abnormal free light chain ratio

Who will transform to Myeloma?

3 risk factors (high-risk MGUS) — 58 percent

2 risk factors (high-int risk MGUS) — 37 percent

1 risk factor (low-int risk MGUS) — 21 percent

no risk factors (low-risk MGUS) — 5 percent
Monitoring MGUS

- Yearly counts, CBC, CMP, SPEP/SIFE, kappa/lambda LC
- New symptoms such as bony pain, weight loss, fever, night sweats
- CRAB criteria – hyperCalcemia, Renal disease, Anemia, Bony lesions
- Amyloidosis symptoms – Neuropathy, nephrotic range proteinuria, restrictive cardiomyopathy
- Lymphadenopathy, hepatomegaly, or splenomegaly
Case #4

A 43 year-old female presents to your clinic for her annual physical. She has no complaints and no chronic medical problems other than moderate obesity. She has never smoked cigarettes and drinks social alcohol only. Exam is normal.

Her CBC reveals:
WBC 11.6 (normal 4.5-11.0 k/cu mm)
Hemoglobin 17.5 (normal 12-15 g/dL)
Hematocrit 52.5 (normal 36-46%)
Platelets 453 (normal 150-350 k/cu mm)

You send an epo level which is slightly low at 2.0 (normal 2.6-18.5 mIU/mL). You also notice she has had borderline high platelet counts around 400k for the last 5 years.
Case #4

• What is the appropriate next step in management of this patient?

• A) Obtain a sleep study
• B) Order a renal ultrasound
• C) Send for JAK2 mutational analysis
• D) Observation with yearly follow-up
• E) Bone marrow biopsy
Case #4

What is the appropriate next step in management of this patient?

- A) Obtain a sleep study
- B) Order a renal ultrasound
- C) **Send for JAK2 mutational analysis**
- D) Observation with yearly follow-up
- E) Bone marrow biopsy
Causes of Erythrocytosis

- Chronic hypoxia
 - Lung disease
 - Obstructive sleep apnea
 - Cyanotic heart disease
- Smoking
- Renal cell carcinoma (epo-producing tumors)
- Congenital hemoglobin disorders (rare)
- Polycythemia Vera (Primary erythrocytosis)
 - Erythropoetin level will be low or low normal
 - Features more suggestive of a primary bone marrow disorder include: elevated WBC, elevated platelet count, specific symptoms such as recurrent thrombosis, aquagenic pruritus, or splenomegaly
Diagnostic Criteria for PV (Revised WHO)

Major criteria

1. Increased hemoglobin
 - Males: ≥ 18 g/dL
 - Females: ≥ 16.5 g/dL

2. Presence of JAK2 mutation

Minor criteria

1. Bone marrow biopsy with hypercellularity and panmyelosis
2. Serum erythropoietin below the reference range for normal
3. Endogenous erythroid colony formation in vitro

Diagnosis requires both major and 1 minor OR First major and 2 minor
Hopkins500: Natural History

Diagnosis
- ET
- PV
- PMF
- AML

10 years
N=405

20 years
N=283

N=57

Courtesy of Dr. Moliterno
Treatment of Erythrocytosis

- Secondary causes
 - Treat underlying cause
 - Phlebotomy performed only if severe erythrocytosis (>19.0 g/dL)

- Polycythemia vera
 - Goal of treatment is to 1) treat symptoms if present, 2) prevent complications of thrombosis
 - Generally treatment aims are hematocrit <45% in men, <42% in women
 - Treatment options include phlebotomy, ASA, hydroxyrurea, interferon, ruxolitinib (now approved)
Questions

rakhi@jhmi.edu

Special thanks to Drs. Satish Shanbhag & Alison Moliterno for sharing slides and data.