Update on *C. difficile*: Diagnosis and Therapy Including Fecal Transplant

Colleen R. Kelly, MD

Clinical Assistant Professor of Medicine
Brown University Warren Alpert School of Medicine

Rhode Island Chapter, American College of Physicians
Annual Scientific Meeting
May 9th 2013
OBJECTIVES

• REVIEW THE CHANGING EPIDEMIOLOGY OF C. DIFFICILE

• UNDERSTAND HOW ALTERATIONS IN THE GUT MICROBIOTA RESULT IN SYMPTOMATIC INFECTION

• EXPLAIN HOW TO MAKE THE DIAGNOSIS AND AVOID COMMON PITFALLS

• DISCUSS CURRENT TREATMENT GUIDELINES AND ALTERNATIVE THERAPEUTIC OPTIONS
Epidemiology
EPIDEMIOLOGY

- **Most common cause of infectious diarrhea in healthcare setting.**
 - 3.4-8.4 cases/1000 admissions in acute care hospitals.

Miller MA et al. 2006.
Cohen SH Inf Cont and Hosp Epidem 2010.
C. difficile

Miller MA et al. 2006.
Redelings MD EID, 2007
Cohen SH Inf Cont and Hosp Epidem 2010.
Lessa FC, et al. CID 2012:55
RIH DATA

• 2,109 cases of CDI in 1,951 unique patients

• Colectomy occurred in 42 patients (2%)

• 15% died during hospitalization

POPULATIONS PREVIOUSLY AT LOW RISK

• PERIPARTUM WOMEN

• COMMUNITY ACQUIRED

• HEALTHY PERSONS WITHOUT RECENT HEALTHCARE CONTACT

MMWR 2005
RISK FACTORS

- **Age > 65**
- **Exposure to Antibiotics**
- **Hospitalization**
- **Immunosuppression**
- **PPIs**
- **Inflammatory Bowel Disease**

Janarthanan, Am J Gastro; 2012
Kwok, Am J Gastro; 2012
C. difficile is caused by disruption of the normal gut microbiota.
Gut Microbiota

- Gut bacteria = 10 x number of human cells

- Dominated by anaerobes
 - Firmicutes (Gram +)
 - Bacteroidetes (Gram -)

- Important biologic functions
 - Metabolism, immune development and protection from pathogens

Musso G. Diabetes Care; 2010
Qin J. Nature; 2010
Prakash, S. et al. Biologics; 2011
Clostridium difficile

- Exposure to antibiotics alters indigenous flora
- Permits colonization & proliferation
- Toxin production by *C. difficile*
 - Inflammation
 - Mucosal injury
 - Fluid secretion

Pepin J. Clin Infect Dis; 2005
MAKING THE DIAGNOSIS
EXAMPLE CASE

• **59 y/o F** treated for ear infection with Cipro

• **Developed diarrhea shortly after finishing antibiotics**
 – *C. difficile* testing negative

• **Symptoms persisted; hospitalized**
 – *C. difficile* positive
Testing Methods

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Availability</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxigenic culture</td>
<td>High</td>
<td>High</td>
<td>Limited</td>
<td>Gold standard Research & epidemiologic studies</td>
</tr>
<tr>
<td>Toxin Enzyme Immunoassay (EIA)</td>
<td>Low (75%)</td>
<td>High (83-98%)</td>
<td>Widely</td>
<td>Tests for toxins A +/- B</td>
</tr>
<tr>
<td>C. Difficile Toxin PCR</td>
<td>High (92%)</td>
<td>High (94%)</td>
<td>Widely</td>
<td>Use only in symptomatic disease</td>
</tr>
</tbody>
</table>
Pitfalls

• Know your laboratory’s testing method(s)
 – Do not send repeat PCR testing

• Colonized patients (false +)
 – Do not test asymptomatic individuals/formed stool
 – No value in “test for cure”

• You think the patient clinically has C. difficile
 – Start empiric therapy

• Post-infectious IBS
TREATMENT
MILD-MODERATE INFECTION

- **Discontinue inciting antibiotic(s)**

- **Metronidazole 500 mg 3x/day x 10 days**
 - Effective; cheap ($2 per day)

- **Vancomycin 125 mg 4x/day x 10-14 days**
 - If allergic/intolerant to metronidazole or pregnant
 - Failing to respond to metronidazole within 5-7 days

- **Avoid anti-peristaltic agents**

Cohen SH Inf Cont and Hosp Epidem 2010.
Surawicz C. Am J Gastro 2013
Severe Infection (uncomplicated)

- **WBC >15,000 cells/mm³**
- **Creatinine >1.5 Baseline**
- **Hypoalbuminemia (<3 grams/dL)**
- **Abdominal Tenderness**

Cohen SH Inf Cont and Hosp Epidem 2010.
Surawicz C. Am J Gastro 2013
TREATMENT OF SEVERE INFECTION

• SUPPORTIVE CARE
 – CONTINUE ENTERAL FEEDING

• ORAL VANCOMYCIN 125 MG 4X/DAY X 10 DAYS
 – $70-140/DAY.
 – NO GOOD REASON TO EXTEND TO 14 DAYS IF BETTER BY DAY 10

• SUPERIOR TO METRONIDAZOLE FOR SEVERE DISEASE

• NO EVIDENCE FOR EXTENDING DURATION OF THERAPY IF PATIENT ALSO ON NON-CDI ANTIBIOTICS.

Cohen SH Inf Cont and Hosp Epidem 2010.
Surawicz C. Am J Gastro 2013
COMPLICATED INFECTION

- Admission to Intensive Care Unit
- Hypotension or shock
- Fever > 38.5°C
- Ileus or significant abdominal distension
- Mental status changes
- WBC > 35,000 cells/mm³ or < 2,000 cells/mm³
- Lactate > 2.2 mmol/l
- Evidence of end organ failure (pulmonary/renal)

Cohen SH Inf Cont and Hosp Epidem 2010.
Surawicz C. Am J Gastro 2013
Complieated Infection

- **CT Scanning of A/P**
 - Megacolon, perforation, severe colitis on CT

- **Oral Vancomycin 500 mg 4 x/day**

- **IV Metronidazole 500 mg Q8H**

- **Rectal Vanco 500 mg in 500 mL if patient has an ileus**

- **Surgical Consultation**

Cohen SH Inf Cont and Hosp Epidem 2010.
Surawicz C. Am J Gastro 2013
SURGERY

- Hypotension requiring vasopressor therapy
- Sepsis and organ dysfunction
- WBC > 50,000
- Lactate > 5
- Not improving after 5 days of medical therapy

Cohen SH Inf Cont and Hosp Epidem 2010.
Surawicz C. Am J Gastro 2013
RECURRENT DISEASE

• 20% AFTER INITIAL TREATMENT

• 40% AFTER FIRST RECURRENCE

• 60% AFTER 2 OR MORE RECURRENCES

• A SMALL NUMBER OF PATIENTS DO NOT SEEM TO CLEAR THE C. DIFFICILE AND BECOME “VANCOMYCIN DEPENDENT.”
 – 125 MG (1 BOX, 20 EA): $673.99
 – COST OF TAPER: $2864

Walgreens.com
MECHANISM

- **Metronidazole resistance**
- **Persistent spores**
- **Impaired host immune response**
 - **Lower anti-toxin antibody levels in patients with relapsing CDI**
- **Decreased diversity of colonic microflora that normally limits expansion of *C. difficile***.

TREATMENT OF RECURRENT CDI

• 1ST RECURRENCE: SAME REGIMEN AS INITIAL EPISODE

• 2ND RECURRENCE: PULSED VANCOMYCIN
 – 125 MG 4X/DAY X 10 DAYS; 125 MG/DAILY EVERY 3 DAYS FOR 10 DOSES (4 WEEKS)
 – MANY PHARMACIES CAN COMPOUND LIQUID VANCO FOR 1/10 THE COST

OTHER OPTIONS?

• IVIG IN PATIENTS WITH HYPOGAMMAGLOBULINEMIA

• FIDAXOMICIN
 – NON-SYSTEMIC, SELECTIVE ERADICATION OF C. DIFFICILE WITH “MINIMAL DISRUPTION” TO GUT FLORA
 – ROLE IN RECURRENT DISEASE NOT ESTABLISHED

• RIFAXIMIN (XIFAXAN®) “CHASER”
 – OFTEN USED; RARELY EFFECTIVE
 – LIMITED EVIDENCE IN RECURRENT DISEASE

• NITAZOXANIDE (ALINIA®)
 – OFF LABEL; ANTIPROTOZOAL

PROBIOTICS?

• **MAY REDUCE** *(relative risk .34)* **INCIDENCE OF CDI WHEN GIVEN PROPHYLACTICALLY WITH COURSES OF ANTIBIOTICS**

• *Saccharomyces boulardii*
 – “**Non pathogenic**” yeast
 – **Inactivates** *C. difficile* **toxin A receptors**
 – **Weak data for decreased recurrence**

• **Fungemia/bractereemia reported in immunocompromised & critically ill**
Fecal transplants beat antibiotics for curing diarrhea caused by C. difficile

Fecal Transplants: They Work, the Regulations Don’t

Fecal transplants successful in treating intestinal ailments
An infusion of feces from a healthy person is much more effective than an antibiotic in treating C. difficile, a recurrent intestinal infection, researchers find.

Fecal transplants show promise in infection fights
Fecal Microbiota Transplantation

- Administration of feces from a healthy individual to promote colonization with beneficial gut flora

- AKA: Fecal bacteriotherapy, Stool transplant, Fecal Flora Reconstitution

Borody TJ. J Clin Gastro; 2004
HISTORY OF FMT

• **4TH CENTURY CHINA: GE HONG**
 – Human fecal suspension by mouth: “dragon yellow soup”
 – Food poisoning & severe diarrhea

• **1958: EISEMAN**
 – Fecal enemas
 – Pseudomembranous enterocolitis

• **SINCE 1958: EUROPE & NORTH AMERICA**
 – Upper and lower GI administration
 – Refractory and recurrent CDI

Eiseman B. Surgery; 1958
Zhang, F. AJG; 2012
SUSPECTED MECHANISM
Cumulative Evidence

- **Recent rapid growth of FMT**

- **Systematic Review**
 - 11 Series; 273 CDI patients
 - 89.7% experienced clinical resolution
 - No reported AEs

Van Nood E, et al. NEJM; 2013
DOES IT WORK?

- RCT duodenal infusion of donor feces vs. vanco (+/- lavage)

- Fecal transplant was effective
 - 13/16 (81%) resolved after first infusion
 - 2/3 responded to second infusion (94%)
 - Response rates of 31% vanco and 23% vanco/lavage treated groups

- No differences in AEs between groups

- Effective = Study was stopped early

Van Nood E, et al. NEJM; 2013
WHY IT WORKS

• 61 y/o F with chronic diarrhea x 8 months repeated CDI relapse; rapid improvement after FT

• Fecal samples collected from patient 7 days before, day (0), 14 and 33 days post FT

• Donor sample analysis

• Characterised bacterial composition before and after transplant

Khoruts A. J Clin Gastroenterol; 2010
OUR EXPERIENCE

• 104 Patients; Ages 19-92

• Duration of CDI 1-84 months

• All had relapsed after metronidazole, repeated tapering courses of vancomycin and *S. boulardii*.

• 94% cure with 1 or 2 (n=4) FMT

• 1 transient UC flare post FMT; no other AEs

Kelly C. de Leon L. Jasutkar N. J Clin Gastroenterol; 2012
OUR PATIENTS

• **SAEs**
 – 3 patients with **Cardiovascular events within 4 weeks of FMT**
 – 1 post obstructive pneumonia
 – 1 recurrent cholangitis

• **9 Patients with IBD + CDI**
 – Effective treated CDI
 – Little effect on underlying IBD

• **Willing to Travel**
 – 50% RI, 30% New England
 – 20% other states (Carolinas, Georgia, Ohio, Florida)
 – Desperate inquiries from Hawaii, Italy, Brazil
FMT FOR RELAPSING C. DIFFICILE

• NIH (NIDDK) funded randomized controlled trial

• Co-investigator: Lawrence Brandt (Montefiore)

• Fecal Transplant via colonoscopy vs. sham
 – 48 subjects

• Stool samples: Donor and Subject (before after FMT)
 – Microbiome analysis
 – Alexander Khoruts (University of Minnesota)
DONOR SELECTION

- **DONOR:** OFTEN PARTNER, IMMEDIATE FAMILY OR HOUSEHOLD CONTACT
 - NOT NECESSARILY RELATED
 - VOLUNTEER DONORS

- **NO ANTIBIOTICS X 90 DAYS**

- **HEALTHY & “CLEAN LIVING”** (AABB DHQ)

- **EXCLUDE DONORS WITH IBD, AUTOIMMUNE, ATOPIC, NEUROLOGIC DISEASE, MALIGNANCY, FIBROMYALGIA/CHRONIC FATIGUE**

- **CLINICAL TRIAL EXCLUDES DONORS WITH OBESITY OR FEATURES OF THE METABOLIC SYNDROME**

PRE-PROCEDURE TESTING

• **DONOR**
 – HIV 1 and 2, Hepatitis (A, B, C), RPR
 – Stool for *C. difficile, Giardia, Cryptosporidium*, Ova and Parasites & routine bacterial culture for Salmonella, Shigella, Campylobacter, Yersinia and E. Coli O157
 – *Isospora/Cyclospora*, Rotavirus, *Listeria, Vibrio*

• **TIME LINE FOR TESTING**
 – HIV testing must be done within 2 weeks of donation
 – All other testing and AABB DHQ within 30 days

• **RECIPIENT**
 – HIV 1 and 2, Hepatitis (A, B, C), RPR

METHOD OF PROCESSING

• **DOSING**
 – 6-8 SPOONFULS/40-100 GRAMS
 – **DILUTE IN 500 CC SALINE**

• **HOMOGENIZE (SHAKE BOTTLE)**

• +/- **FILTRATION THROUGH GAUZE**

• **DRAWN INTO 60 CC SYRINGES (300-360 mL)**

• **INFUSE AT COLONOSCOPY (OR SIGMOIDOSCOPY) THROUGH THE BIOPSY PORT**
OTHER METHODS OF ADMINISTRATION

• Nasogastric or nasoduodenal tube
 (Aas et al. 2003; Rubin et al 2012)
 – LESS APPEALING TO PATIENTS
 – ASPIRATION RISK
 – ABILITY OF BACTERIA TO REACH/colonize lower GI tract

• Retention enemas
 (Silverman et al. 2010; Kassam et al 2012)
 – VARIABLE PATIENT ABILITY TO TOLERATE
 – DOES NOT REACH BEYOND SPLENIC FLEXURE
 – MAY REQUIRE MULTIPLE TREATMENTS
CONTRAINDICATIONS?

• **NO ABSOLUTE CONTRAINDICATIONS ESTABLISHED (NEUTROPENIA)**

• **CAUTION IN SEVERE IMMUNOCOMPROMISE**
 – AIDS, Bone Marrow Transplant, undergoing chemotherapy, solid organ transplant on full immunosupression.

• **AT RISK FOR INCREASED ADVERSE EVENTS**
 – Decompensated liver disease/ascites
 – anti-TNF, cyclosporine, steroids

CHALLENGES

- SAFETY ISSUES
- SOURCE OF DONOR MATERIAL
- REIMBURSEMENT
- REGULATORY
Key Points

- The epidemiology of *C. difficile* is changing: increased incidence & previously low risk populations.
- CDI results from disruption of the normal gut flora.
- Diagnosis should be based on patient’s history and results of fecal testing.
- Algorithms for management differ depending on severity of disease and alternative therapeutic options exist for recurrent disease.