Individualizing the Glycemic Goals

Michelle Mangual Garcia, MD
Diplomate of the American Board of Internal Medicine; Endocrinology, Diabetes and Metabolism and the American Board of Clinical Lipidology
Disclosures

• Dr. Michelle Mangual, endocrinologist, declares that she serves as a speaker and/or consultant for the following pharmaceutical companies: *Eli Lilly and Astra Zeneca.*
Objectives

• Discuss the evidence from the intensive glycemic control trials and observational studies.
• The history of the target of less than 7%.
• Glycemic goals in patients with multiple comorbidities.
• Drug selection in patients with ASCVD or heart failure.
• Glycemic goals in older patients with diabetes.
The evidence from trials and observational study

• Diabetes Control and Complications Trial
 (DCCT; 1441 participants with type 1 diabetes duration <15 years)
• The goal was to achieve glycemic control as close to normal without causing adverse events versus asymptomatic glycemic control.
• Contrast achieved: A1c ~7% versus ~9% over ~6.5 years.
A1c during DCCT and EDIC

After the trial, 96% enrolled in follow-up. A1c converged at 8%.

EDIC = Epidemiology of Diabetes Interventions and Complications

Reduction in major complications with intensive compared with Conventional during DCCT and EDIC

- At 6 years, 3 step progression of retinopathy was reduced 76%, new or progression of albuminuria was reduced 50%, neuropathy reduced 60%.
- Long term benefits over ~30 years of follow-up included 56% reduction in retinopathy, 50% reduction in nephropathy, 30% reduction in neuropathy.
DCCT/EDIC: Cumulative incidence of the first occurrence of non-fatal MI, stroke, or CV death.

Risk Reduction 57%
97% CI: 12-79
P=0.02

The evidence from trials and observational study

United Kingdom Prospective Diabetes Study
(UKPDS: 4,209 participants with new onset type 2 diabetes and FBG>108 mg/dl after 3-month dietary run in)

• Standard policy (treat for symptoms or glucose >270 mg/dl) vs intensive policy (treat with SU, insulin or metformin)
• Mean A1c contrast achieved ~7% vs ~7.9% over ~10 years.
• Clinically meaningful endpoints improved at end of randomized period.
• Additional ten years of off-trial follow-up, “Legacy Effect”
After median 8.8 years post-trial follow-up

<table>
<thead>
<tr>
<th>Aggregate Endpoint</th>
<th>1997</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any diabetes related endpoint</td>
<td>RRR: 12%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>P: 0.029</td>
<td>0.040</td>
</tr>
<tr>
<td>Microvascular disease</td>
<td>RRR: 25%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>P: 0.009</td>
<td>0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>RRR: 16%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>P: 0.052</td>
<td>0.014</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>RRR: 6%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>P: 0.44</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Study, Patient and HbA1c Characteristics of 5 RCTs

Summary of Major Clinical Trials

<table>
<thead>
<tr>
<th>Trial Name, Mean or median FU, number enrolled</th>
<th>Age ; Baseline</th>
<th>Diabetes Duration</th>
<th>HbA1c; Baseline (median)</th>
<th>HbA1c Achieved Intensive vs Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCORD 4-5 years; N=10,251</td>
<td>62 years</td>
<td>10 years</td>
<td>8.1%</td>
<td>6.4% vs 7.5%</td>
</tr>
<tr>
<td>ADVANCE 5-11 years; N=11,140</td>
<td>66 years</td>
<td>8 years</td>
<td>7.8%</td>
<td>6.4% vs 7.0%</td>
</tr>
<tr>
<td>UKPDS 33 (Insulin/SU) 11-17 years; N=3,867</td>
<td>54 years</td>
<td>Newly Dx</td>
<td>7.0%</td>
<td>7.0% vs 7.9%</td>
</tr>
<tr>
<td>UKPDS 34 (metformin) 11-18 years; N=753</td>
<td>53 years</td>
<td>Newly Dx</td>
<td>7.2%</td>
<td>7.4% vs 8.4%</td>
</tr>
<tr>
<td>VADT 6-12 years; N=1,791</td>
<td>60 years</td>
<td>12 years</td>
<td>9.4%</td>
<td>6.9% vs 8.4%</td>
</tr>
</tbody>
</table>
Impact of Intensive Therapy for Diabetes

<table>
<thead>
<tr>
<th>Study</th>
<th>Microvascular</th>
<th>CVD</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKPDS<sup>1,2</sup></td>
<td>![down arrow]</td>
<td>![double-headed arrow]</td>
<td>![down arrow]</td>
</tr>
<tr>
<td>DCCT/EDIC<sup>*3,4</sup></td>
<td>![down arrow]</td>
<td>![double-headed arrow]</td>
<td>![down arrow]</td>
</tr>
<tr>
<td>ACCORD<sup>5</sup></td>
<td>![down arrow]</td>
<td>![double-headed arrow]</td>
<td>![up arrow]</td>
</tr>
<tr>
<td>ADVANCE<sup>6</sup></td>
<td>![down arrow]</td>
<td>![double-headed arrow]</td>
<td>![double-headed arrow]</td>
</tr>
<tr>
<td>VADT<sup>7</sup></td>
<td>![down arrow]</td>
<td>![double-headed arrow]</td>
<td>![double-headed arrow]</td>
</tr>
</tbody>
</table>

* in T1DM
Microvasc = microvascular; CVD = cardiovascular disease

Initial trial - dark grey
Long-term follow-up - light grey
ACCORD: Risk of Death over a Range of Mean A1c

Steady increase of risk from 6 to 9% A1c with intensive strategy

Excess risk of mortality with intensive strategy occurred above an A1c 7%

Riddle et al. Diabetes Care 33:983–990, 2010
Epidemiological analysis: Relative importance of risk factors for acute myocardial infarction and stroke

Epidemiological Analysis: Early glycemic control matters

Epidemiological Analysis: Early glycemic control matters

• “Among patients with newly diagnosed diabetes and 10 years of survival, HbA1c levels ≥6.5% for the 1st year after diagnosis were associated with worse outcomes. Immediate, intensive treatment for newly diagnosed patients may be necessary to avoid irremediable long-term risk for diabetic complications and mortality.”

Standards of Medical Care in Diabetes
First publication of the A1c goal <7% was in 1994

<table>
<thead>
<tr>
<th>Biochemical index</th>
<th>Nondiabetic</th>
<th>Goal</th>
<th>Action suggested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprandial glucose</td>
<td><115</td>
<td>80–120</td>
<td><80</td>
</tr>
<tr>
<td>Bedtime glucose (mg/dl)</td>
<td><120</td>
<td>100–140</td>
<td>>140</td>
</tr>
<tr>
<td>Hemoglobin A₁c (%)</td>
<td><6</td>
<td><7</td>
<td>>160</td>
</tr>
</tbody>
</table>

These values are for nonpregnant individuals. "Action suggested" depends on individual patient circumstances. Hemoglobin A₁c is referenced to a nondiabetic range of 4.0–6.0% (mean 5.0%, standard deviation 0.5%).
Standards of Medical Care in Diabetes
In 1997, modified to indicate “action suggested >8%”

Table 1—Glycemic control for people with diabetes

<table>
<thead>
<tr>
<th>Biochemical index</th>
<th>Nondiabetic</th>
<th>Goal</th>
<th>Action suggested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprandial glucose (mg/dl)</td>
<td><115</td>
<td>80–120</td>
<td><80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>140</td>
</tr>
<tr>
<td>Bedtime glucose (mg/dl)</td>
<td><120</td>
<td>100–140</td>
<td><100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>160</td>
</tr>
<tr>
<td>Hemoglobin A₁c (%)</td>
<td><6</td>
<td><7</td>
<td>>8</td>
</tr>
</tbody>
</table>

These values are for nonpregnant individuals. “Action suggested” depends on individual patient circumstances. Such actions may include enhanced diabetes self-management education, comanagement with a diabetes team, referral to an endocrinologist, change in pharmacological therapy, initiation or increased SMBG, or more frequent contact with the patient. HbA₁c is referenced to a nondiabetic range of 4.0–6.0% (mean 5.0%, SD 0.5%).
Standards of Medical Care in Diabetes
Since 2003, the A1c goal has been <7%

Table 6—Summary of recommendations for adults with diabetes mellitus

<table>
<thead>
<tr>
<th>Glycemic control</th>
</tr>
</thead>
</table>
| A1C | <7.0%*
| Preprandial plasma glucose | 90–130 mg/dl (5.0–7.2 mmol/l)
| Peak postprandial plasma glucose | <180 mg/dl (<10.0 mmol/l)
| Blood pressure | <130/80 mmHg
| Lipids |
| LDL | <100 mg/dl (<2.6 mmol/l)
| Triglycerides† | <150 mg/dl (<1.7 mmol/l)
| HDL | >40 mg/dl (>1.1 mmol/l)†

Key concepts in setting glycemic goals:
- Goals should be individualized
- Certain populations (children, pregnant women, and elderly) require special considerations
- Less intensive glycemic goals may be indicated in patients with severe or frequent hypoglycemia
- More intensive glycemic goals may further reduce microvascular complications at the cost of increasing hypoglycemia
- Postprandial glucose may be targeted if A1C goals are not met despite reaching preprandial glucose goals

*Referenced to a nondiabetic range of 4.0–6.0% using a DCCT-based assay. †Current NCEP/ATP III guidelines suggest that in patients with triglycerides ≥200 mg/dl, the “non-HDL cholesterol” (total cholesterol minus HDL) be utilized. The goal is ≤130 mg/dl (53). ‡For women, it has been suggested that the HDL goal be increased by 10 mg/dl.
Guidance Statement 1: Clinicians should personalize goals for glycemic control in patients with type 2 diabetes on the basis of a discussion of benefits and harms of pharmacotherapy, patients' preferences, patients' general health and life expectancy, treatment burden, and costs of care.
Guidance Statement 2: Clinicians should aim to achieve an HbA$_{1c}$ level between 7% and 8% in most patients with type 2 diabetes.

Guidance Statement 3: Clinicians should consider deintensifying pharmacologic therapy in patients with type 2 diabetes who achieve HbA$_{1c}$ levels less than 6.5%.
Who are “the many” in “a reasonable A1c goal for many nonpregnant adults is <7%”?

- Those who already have an A1c <7% without adverse events
- Life expectancy >10 years
- People with CVD or CKD (GLP1 RA or SGLT2 inhibitors)
- Women of childbearing potential
A changing paradigm in caring for patients with type 2 diabetes and clinical CVD

<table>
<thead>
<tr>
<th>Medication</th>
<th>NNT to prevent a Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins (for 5 years)</td>
<td>100</td>
</tr>
<tr>
<td>Anti-hypertensives (for 5 years)</td>
<td>125</td>
</tr>
<tr>
<td>Empagliflozin (for 3 years)</td>
<td>39</td>
</tr>
<tr>
<td>Liraglutide (for 3 years)</td>
<td>98</td>
</tr>
</tbody>
</table>

These benefits of GLP-1 receptor agonists and SGLT2 inhibitors emerged in trials were the drugs were added (versus placebo) in patients with CVD and an A1c >7%.

Drug Selection in people with ASCVD or heart failure The new era of antidiabetic medications
The major goal of diabetes management is to prevent its complications.
FDA-Mandated CV Outcomes Trials in T2DM

<table>
<thead>
<tr>
<th>Study</th>
<th>SAVOR<sup>1</sup></th>
<th>EXAMINE<sup>2</sup></th>
<th>TECOS<sup>3</sup></th>
<th>CARMELINA<sup>4</sup></th>
<th>CAROLINA<sup>5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP4-i</td>
<td>saxagliptin</td>
<td>alogliptin</td>
<td>sitagliptin</td>
<td>linagliptin</td>
<td>linagliptin</td>
</tr>
<tr>
<td>Comparator</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>glimepiride (SU)</td>
</tr>
<tr>
<td>N</td>
<td>16,492</td>
<td>5380</td>
<td>14,671</td>
<td>6979</td>
<td>6103</td>
</tr>
<tr>
<td>Results</td>
<td>2013</td>
<td>2013</td>
<td>2015</td>
<td>2018</td>
<td>2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>ELIXA<sup>6</sup></th>
<th>LEADER<sup>7</sup></th>
<th>SUSTAIN 6<sup>8</sup></th>
<th>EXSCEL<sup>9</sup></th>
<th>REWIND<sup>10</sup></th>
<th>HARMONY<sup>11</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP1-RA</td>
<td>lixisenatide</td>
<td>liraglutide</td>
<td>semaglutide</td>
<td>exenatide LR</td>
<td>dulaglutide</td>
<td>albiglutide</td>
</tr>
<tr>
<td>Comparator</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td>N</td>
<td>6068</td>
<td>9340</td>
<td>3297</td>
<td>14,752</td>
<td>9901</td>
<td>9463</td>
</tr>
<tr>
<td>Results</td>
<td>2015</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>EMPA-REG<sup>12</sup></th>
<th>CANVAS<sup>13</sup></th>
<th>(CREDENCE<sup>14</sup>)</th>
<th>DECLARE<sup>15</sup></th>
<th>VERTIS CV<sup>16</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLT2-i</td>
<td>empagliflozin</td>
<td>canagliflozin</td>
<td>canagliflozin</td>
<td>dapagliflozin</td>
<td>ertugliflozin</td>
</tr>
<tr>
<td>Comparator</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td>N</td>
<td>7020</td>
<td>4330</td>
<td>4401</td>
<td>17,160</td>
<td>8246</td>
</tr>
<tr>
<td>Results</td>
<td>2015</td>
<td>2017</td>
<td>2018</td>
<td>2018</td>
<td>2020</td>
</tr>
</tbody>
</table>

Cardiovascular Outcome Trials for DPP4 Inhibitors

- **CVD or CRFs**
 - A1c 6.5–12.0%
 - n=16,492

- **Saxagliptin**
 - Median follow-up 2.1 years
 - CV death, non-fatal MI, or non-fatal stroke

- **Placebo**

- **Hazard Ratio**
 - 1.00
 - (95% CI 0.89, 1.12)

- **ACS**
 - A1c 6.5–11.0%
 - n=5,380

- **Alogliptin**
 - Median follow-up 1.5 years

- **Placebo**

- **CV death, non-fatal MI, or non-fatal stroke**

- **Hazard Ratio**
 - 0.96
 - (upper boundary of 1-sided repeated CI 1.15)

- **CVD**
 - A1c 6.5–8.0%
 - n=14,735

- **Sitagliptin**
 - Median follow-up 3 years
 - CV death, non-fatal MI, or non-fatal stroke, or UA requiring hospitalization

- **Placebo**

- **CV death, non-fatal MI, or non-fatal stroke**

- **Hazard Ratio**
 - 0.98
 - (95% CI 0.88, 1.09)
 - P=0.645

- **CVD or CRFs**
 - A1c 6.5–10.0%
 - n=6,979

- **Linagliptin**
 - Median follow-up 2.2 years

- **Placebo**

- **CV death, non-fatal MI, or non-fatal stroke**

- **Hazard Ratio**
 - 1.02
 - (95% CI 0.89, 1.17)

Median Duration of Follow-up
- Randomization
- Year 1
- Year 2
- Year 3

SAVOR-TIMI 53, EXAMINE, and TECOS: Hospitalization for Heart Failure

<table>
<thead>
<tr>
<th>Study</th>
<th>Drug n/N (%)</th>
<th>Placebo n/N (%)</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVOR-TIMI</td>
<td>289/8280 (3.5%)</td>
<td>228/8212 (2.8%)</td>
<td>1.27</td>
<td>1.07, 1.51</td>
<td>.009*</td>
</tr>
<tr>
<td>(saxagliptin vs placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMINE</td>
<td>106/2701 (3.9%)</td>
<td>89/2679 (3.3%)</td>
<td>1.19</td>
<td>0.89, 1.58</td>
<td>.238</td>
</tr>
<tr>
<td>(alogliptin vs placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECOS</td>
<td>228/7332 (3.1%)</td>
<td>229/7339 (3.1%)</td>
<td>1.00</td>
<td>0.83, 1.20</td>
<td>.983</td>
</tr>
<tr>
<td>(sitagliptin vs placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant increase in hospitalizations for heart failure associated with saxagliptin use in SAVOR-TIMI.

Summary: DPP4-Inhibitors Cardiovascular Outcome Trials

- All trials met the primary endpoint of demonstrating that there is no increased risk of CVD
- No benefit is apparent
- Cannot assume that this is a class effect
- There may be heterogeneity with respect to heart failure

- These large trials have been useful for evaluating other potentially beneficial effects of the drugs.
 - Decreased rates of albuminuria

- More precise estimates of the risk of other rare events
Cardiovascular benefits of GLP-1 analogs

Liraglutide (LEADER study)
- Cardiovascular Events: HR: 0.87 (0.78-0.97), P<0.001 for noninferiority, P=0.01 for superiority
- Death from any cause: 0.85 (0.74-0.97), p=0.02

Semaglutide (SUSTAIN-6)
- CV death, nonfatal MI/ stroke: HR: 0.74 (0.58-0.95), P<0.001 for noninferiority, P=0.02 for superiority

Exenatide (weekly) (EXSCEL Study)
- CV death, nonfatal MI/ stroke: HR: 0.91 (0.83-1.00), P<0.001 for noninferiority, P=0.06 for superiority
- Death from any cause: 0.86 (0.77-0.97)

Dulaglutide (REWIND study)
- 3-Point MACE: HR: 0.88 (0.79-0.99), P = 0.026
- Death from Any Cause: 0.90 (0.80-1.01), p =0.067
Cardiovascular Benefits of GLP-1 RA

<table>
<thead>
<tr>
<th>GLP1 receptor agonists</th>
<th>LEADER</th>
<th>EXSCEL</th>
<th>SUSTAIN-6</th>
<th>ELIXA</th>
<th>Harmony</th>
<th>REWIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide (MR)</td>
<td>9340</td>
<td>14,752</td>
<td>3297</td>
<td>6068</td>
<td>9463</td>
<td>9901</td>
</tr>
<tr>
<td>Exenatide (s.c.)</td>
<td>72.5</td>
<td>73.1</td>
<td>83.0</td>
<td>100</td>
<td>100</td>
<td>31.5</td>
</tr>
<tr>
<td>Semaglutide</td>
<td>3.8</td>
<td>3.2</td>
<td>2.1</td>
<td>2.1</td>
<td>1.6</td>
<td>5.4</td>
</tr>
<tr>
<td>Lixisenatide</td>
<td>1305</td>
<td>2389</td>
<td>777</td>
<td>1922</td>
<td>NA</td>
<td>853</td>
</tr>
<tr>
<td>Albiglutide</td>
<td>23.1</td>
<td>21.6</td>
<td>24.0</td>
<td>23.2</td>
<td>23.0</td>
<td>22.2</td>
</tr>
<tr>
<td>Dulaglutide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample size
ASCVD%
Median fu (yr)
Hx of HF
eGFR <60 (%)

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>LEADER</th>
<th>EXSCEL</th>
<th>SUSTAIN-6</th>
<th>ELIXA</th>
<th>Harmony</th>
<th>REWIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE</td>
<td>0.87 (0.78, 0.97)</td>
<td>0.91 (0.83, 1.00)</td>
<td>0.74 (0.58, 0.95)</td>
<td>1.02 (0.89, 1.17)</td>
<td>0.78 (0.68, 0.90)</td>
<td>0.88 (0.79, 0.99)</td>
</tr>
<tr>
<td>CV Death</td>
<td>0.78 (0.66, 0.93)</td>
<td>0.88 (0.76, 1.02)</td>
<td>0.98 (0.65, 1.48)</td>
<td>0.98 (0.78, 1.22)</td>
<td>0.93 (0.73, 1.19)</td>
<td>0.91 (0.78, 1.06)</td>
</tr>
<tr>
<td>MI</td>
<td>0.88 (0.75, 1.03)</td>
<td>0.97 (0.85, 1.10)</td>
<td>0.74 (0.51, 1.08)</td>
<td>1.03 (0.87, 1.22)</td>
<td>0.75 (0.61, 0.90)</td>
<td>0.96 (0.79, 1.16)</td>
</tr>
<tr>
<td>Stroke</td>
<td>0.89 (0.72, 1.11)</td>
<td>0.85 (0.70, 1.03)</td>
<td>0.61 (0.38, 0.99)</td>
<td>1.12 (0.79, 1.58)</td>
<td>0.86 (0.66, 1.14)</td>
<td>0.76 (0.62, 0.94)</td>
</tr>
<tr>
<td>hHF</td>
<td>0.87 (0.73, 1.05)</td>
<td>0.94 (0.78, 1.13)</td>
<td>1.11 (0.77, 1.61)</td>
<td>0.96 (0.75, 1.23)</td>
<td>0.85 (0.70, 1.04)</td>
<td>0.93 (0.77, 1.12)</td>
</tr>
<tr>
<td>All Death</td>
<td>0.85 (0.74, 0.97)</td>
<td>0.86 (0.77, 0.97)</td>
<td>1.05 (0.74, 1.50)</td>
<td>0.94 (0.78, 1.13)</td>
<td>0.95 (0.79, 1.16)</td>
<td>0.90 (0.80, 1.01)</td>
</tr>
</tbody>
</table>

Kidney Endpoint
Meta-analysis of 5 CVOTs (3 with GLP-1 RAs and 2 with SGLT-2i) in patients with history of CVD at baseline.
Meta-analysis of the 5 CVOTs in patients without history of CVD at baseline.
Proposed mechanisms of CV benefits of GLP-1 receptor agonists

FDA has granted Liraglutide, Semaglutide, and Dulaglutide Additional CV Indications

In adults with T2DM + established CVD...

- Liraglutide $\rightarrow \downarrow$ MACE
- Semaglutide $\rightarrow \downarrow$ MACE

In adults with T2DM + established CVD or high CV risk

- Dulaglutide $\rightarrow \downarrow$ MACE
CVOTs with SGLT2 inhibitors

TRIAL DESIGNS

EMPARY-REG OUTCOME

- Empagliflozin 25 mg OD
- Empagliflozin 10 mg OD
- Placebo OD

Established CVD n=7,028

CANVAS Program

- Canagliflozin OD
- Placebo OD

Established CVD or risk factors n=10,142

DECLARE-TIMI

- Dapagliflozin OD
- Placebo OD

Established CVD or risk factors n=17,160

SGLT2 Inhibitors Reduce CV Risk

Hospitalization for Heart Failure: Effects of SGLT2 Inhibitors

- EMPA-REG OUTCOME
 Empagliflozin
 - 35%
 - 9.4 vs 14.5 events/1000 p-y
 - HR 0.65 (0.50-0.85)

- CANVAS/CANVAS-R
 Canagliflozin
 - 33%
 - 5.5 vs 8.7 events/1000 p-y
 - HR 0.67 (0.52-0.87)

- DECLARE-TIMI 58
 Dapagliflozin
 - 27%
 - 6.2 vs 8.5 events/1000 p-y
 - HR 0.73 (0.61-0.88)

Heart Failure Hospitalization By Prior Heart Failure

<table>
<thead>
<tr>
<th>Study</th>
<th>Events per 1000 Patient-Years</th>
<th>Hazard Ratio (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of HF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMPA-REG Outcomes</td>
<td>40.7</td>
<td>0.75 (0.48, 1.19)</td>
</tr>
<tr>
<td>CANVAS Program</td>
<td>14.1</td>
<td>0.51 (0.33, 0.78)</td>
</tr>
<tr>
<td>DECLARE-TIMI 58</td>
<td>27.7</td>
<td>0.73 (0.55, 0.96)</td>
</tr>
<tr>
<td>Fixed effects model for history of HF (p=0.0002)</td>
<td>0.68 (0.55, 0.83)</td>
<td></td>
</tr>
<tr>
<td>No history of HF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMPA-REG Outcomes</td>
<td>6.4</td>
<td>0.59 (0.43, 0.82)</td>
</tr>
<tr>
<td>CANVAS Program</td>
<td>4.3</td>
<td>0.79 (0.57, 1.09)</td>
</tr>
<tr>
<td>DECLARE-TIMI 58</td>
<td>4.0</td>
<td>0.78 (0.58, 0.92)</td>
</tr>
<tr>
<td>Fixed effects model for MRF (p<0.0001)</td>
<td>0.71 (0.60, 0.83)</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $Q=1.73$, $p=0.42$, $I^2=0.0\%$
DAPA-HF Design

- Informed consent
- Inclusion/exclusion
- Clinical assessment
- ECG
- NT-proBNP
- Laboratory assessments

Enrolment

Randomization

N=2371
Placebo
≥844 Primary endpoints
Composite of:
- CV death
- HF hospitalization
- Urgent HF visit

N=2373
Dapagliflozin
10 mg once daily

Visit 1
Visit 2
Visit 3
Visit 4
Visit 5
Visit 6 etc.

Day −14
Day 0
Day 14
Day 60
Day 120
Every 120 days

McMurray et al. ESC 2019
DAPA-HF: Primary Outcome

CV Death/HF hospitalization/Urgent HF visit

HR 0.74 (0.65, 0.85)

p = 0.00001

NNT = 21

Placebo

Dapagliflozin

Months since Randomization

Cumulative Percentage (%)

Number at Risk

Dapagliflozin 2373 2305 2221 2147 2002 1560 1146 612 210

Placebo 2371 2258 2163 2075 1917 1478 1096 593 210
DAPA-HF: Results in T2DM and Non-DM Patients

Primary endpoint

<table>
<thead>
<tr>
<th></th>
<th>Dapagliflozin (n=2373)</th>
<th>Placebo (n=2371)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>386/2373</td>
<td>502/2371</td>
<td>0.74 (0.65, 0.85)</td>
</tr>
<tr>
<td>Type 2 diabetes at baseline*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>215/1075</td>
<td>271/1064</td>
<td>0.75 (0.63, 0.90)</td>
</tr>
<tr>
<td>No</td>
<td>171/1298</td>
<td>231/1307</td>
<td>0.73 (0.60, 0.88)</td>
</tr>
</tbody>
</table>

[Graph showing HR with confidence intervals]
CREDENCE Trial: Renal outcomes in type 2 diabetes and nephropathy.

Primary Outcome:
ESKD, Doubling of Serum Creatinine, or Renal or CV Death

Hazard ratio, 0.70 (95% CI, 0.59–0.82)
P = 0.00001

340 participants
245 participants

Placebo
Canagliflozin

Proposed mechanisms of CV benefits of SGLT-2 inhibitors
FDA Granted Select SGLT2i’s Additional CV Indications

In adults with T2DM + established CVD...

• Empagliflozin ↓ risk of CV death
• Canagliflozin ↓ risk of MACE
• Canagliflozin ↓ risk of ESKD
• Dapagliflozin ↓ risk of HHF
FDA-Mandated CV Outcomes Trials in T2DM

<table>
<thead>
<tr>
<th>Study</th>
<th>SAVOR¹</th>
<th>EXAMINE²</th>
<th>TECOS³</th>
<th>CARMELINA⁴</th>
<th>CAROLINA⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP4-i</td>
<td>saxagliptin</td>
<td>alogliptin</td>
<td>sitagliptin</td>
<td>linagliptin</td>
<td>linagliptin</td>
</tr>
<tr>
<td>Comparator</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>glimepiride</td>
</tr>
<tr>
<td>N</td>
<td>2013</td>
<td>2013</td>
<td>2015</td>
<td>2018</td>
<td>2018</td>
</tr>
<tr>
<td>Results</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>ELIXA⁶</th>
<th>LEADER⁷</th>
<th>SUSTAIN 6⁸</th>
<th>EXSCEL⁹</th>
<th>REWIND¹⁰</th>
<th>HARMONY¹¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP1-RA</td>
<td>lixisenatide</td>
<td>liraglutide</td>
<td>semaglutide</td>
<td>exenatide</td>
<td>dulaglutide</td>
<td>albiglutide</td>
</tr>
<tr>
<td>Comparator</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td>N</td>
<td>2015</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2018</td>
</tr>
<tr>
<td>Results</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>EMPA-REG¹²</th>
<th>CANVAS¹³</th>
<th>(CREDENCE¹⁴)</th>
<th>DECLARE¹⁵</th>
<th>VERTIS CV¹⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLT2-i</td>
<td>empagliflozin</td>
<td>canagliflozin</td>
<td>canagliflozin</td>
<td>dapagliflozin</td>
<td>ertugliflozin</td>
</tr>
<tr>
<td>Comparator</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
<td>placebo</td>
</tr>
<tr>
<td>N</td>
<td>2015</td>
<td>2017</td>
<td>2018</td>
<td>2018</td>
<td>8246</td>
</tr>
<tr>
<td>Results</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
<td>NEUTRAL</td>
</tr>
</tbody>
</table>

Glycemic Control, Preexisting Cardiovascular Disease, and Risk of Major Cardiovascular Events in Patients with Type 2 Diabetes Mellitus: Systematic Review With Meta-Analysis of Cardiovascular Outcome Trials and Intensive Glucose Control Trials

Dario Giugliano, MD; Maria Ida Maiorino, MD, PhD; Giuseppe Bellastella, MD; Paolo Chiodini, MSc; Katherine Esposito, MD, PhD
IGCTs, CVOTs, and Risk of MACE in Patients With T2DM

<table>
<thead>
<tr>
<th>Trials</th>
<th>ΔA1C (%)</th>
<th>Hazard Ratio for MACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCTs</td>
<td>−0.90 (−1.30 to −0.50)</td>
<td>0.91 (0.84 to 0.99)</td>
</tr>
<tr>
<td>N=27 049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVOTs</td>
<td>−0.42 (−0.53 to −0.30)</td>
<td>0.92 (0.87 to 0.96)</td>
</tr>
<tr>
<td>N=120 765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVOTs</td>
<td>−0.90</td>
<td>0.67 (0.49 to 0.93)</td>
</tr>
<tr>
<td>meta-regression</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CVOTs indicates cardiovascular outcome trials; ΔA1C, change in glycated hemoglobin; IGCTs, intensive glucose control trials; MACE, major cardiovascular events; T2DM, type 2 diabetes mellitus.
Reduction in MACE associated with reduction in A1c in CVOTs

Figure 1. Meta-regression analysis between reduction of HbA1c and MACE risk in the 12 CVOTs. CVOT indicates cardiovascular outcome trial; HbA1c, glycated hemoglobin; HR, hazard ratio; MACE, major cardiovascular events.

Giugliano, D., et al. JAHA. Volume 8, Issue 12, 18 June 2019
Treatment of Diabetes in Older Adults

An Endocrine Society Clinical Practice Guideline
• Prediabetes is highly prevalent in older people, however interventions to delay progression from prediabetes to diabetes are especially effective in this age group.

• The prevalence of type 2 diabetes increases as individuals age and exaggerates the incidence of both microvascular and macrovascular complications.

• Clinicians should perform regular screening for prediabetes and diabetes in the older population and implement interventions as indicated in this guideline.

• Given the heterogeneity of the health status of older people with diabetes the guideline emphasizes shared decision-making and provides a framework to assist healthcare providers to individualize treatment goals.
Diabetes in the older population

- Older individuals with diabetes
- Increased risk
 - Loss of independence in ADL
 - Falls
 - Hypoglycemia
 - Poor medication adherence

- Cognitive dysfunction
- Frailty
- Sarcopenia
Key Recommendation for Overall Health Assessment

• In patients aged 65 and older with diabetes, we advise assessing the patient’s overall health and personal values prior to the determination of treatment goals and strategies. (Ungraded Good Practice Statement)

Step 1: Assessing overall health

<table>
<thead>
<tr>
<th>Overall Health Category</th>
<th>Group 1: Good Health</th>
<th>Group 2: Intermediate Health</th>
<th>Group 3: Poor Health</th>
</tr>
</thead>
</table>
| | No comorbidities or 1-2 non-diabetes chronic illnesses* and No ADLc impairments and \leq1 IADL impairment | 3 or more non-diabetes chronic illnesses* and/or Any one of the following: mild cognitive impairment or early dementia | Any one of the following:
End-stage medical condition(s)**
Moderate to severe dementia
\geq2 ADL impairments
Residence in a long-term nursing facility |

Reasonable glucose target ranges and HbA1c by group

*Does not include diabetes ** e.g. metastatic cancer, oxygen requiring COPD, ESKD on HD, advanced HF. ADL: Activities of daily living (e.g. eating, bathing, dressing) IADL: Instrumental activities of daily living (e.g. managing money, doing housework)*

Step 2: Identify HbA1c and glucose targets

<table>
<thead>
<tr>
<th>Overall Health Category</th>
<th>Group 1: Good Health</th>
<th>Group 2: Intermediate Health</th>
<th>Group 3: Poor Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of drugs that may cause hypoglycemia (e.g., insulin, sulfonylurea, glinides)</td>
<td>No</td>
<td>Fasting: 90-130 mg/dL Bedtime: 90-150 mg/dL <7.5%</td>
<td>Fasting: 90-150 mg/dL Bedtime: 100-180 mg/dL <8%</td>
</tr>
<tr>
<td></td>
<td>Yes<sup>c</sup></td>
<td>Fasting: 90-150 mg/dL Bedtime: 100-180 mg/dL ≥7.0 and <7.5%</td>
<td>Fasting: 100-150 mg/dL Bedtime: 150-180 mg/dL ≥7.5 and <8.0%</td>
</tr>
</tbody>
</table>

Approach to Individualization of Glycemic Targets

<table>
<thead>
<tr>
<th>Patient / Disease Features</th>
<th>More stringent (A1C 7%)</th>
<th>Less stringent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks potentially associated with hypoglycemia and other drug adverse effects</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Disease duration</td>
<td>newly diagnosed</td>
<td>long-standing</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>long</td>
<td>short</td>
</tr>
<tr>
<td>Important comorbidities</td>
<td>absent</td>
<td>few / mild</td>
</tr>
<tr>
<td>Established vascular complications</td>
<td>absent</td>
<td>few / mild</td>
</tr>
<tr>
<td>Patient preference</td>
<td>highly motivated, excellent self-care capabilities</td>
<td>preference for less burdensome therapy</td>
</tr>
<tr>
<td>Resources and support system</td>
<td>readily available</td>
<td>limited</td>
</tr>
</tbody>
</table>
ADA/EASD Treatment Algorithm for T2D
ADA/EASD Treatment Algorithm for T2D

Established ASCVD or CKD

ASCVD Predominates

Either/Or

GLP-1 RA with proven CVD benefit

SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate

If SGLT2i not tolerated or contraindicated or if eGFR less than adequate add GLP-1 RA with proven CVD benefit

If HbA1c above target

Further intensification is required or patient is now unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV safety:
- Consider adding the other class (GLP-1 RA or SGLT2i) with proven CVD benefit
- DPP-4i if not on GLP-1 RA
- Basal insulin
- TZD
- SU

If HbA1c above target

Avoid TZD in the setting of HF
Choose agents demonstrating CV safety:
- Consider adding the other class with proven CVD benefit
- DPP-4i (not saxagliptin) in the setting of HF (if not on GLP-1 RA)
- Basal insulin
- SU

HF or CKD Predominates

Preferably

SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate

OR

If SGLT2i not tolerated or contraindicated or if eGFR less than adequate add GLP-1 RA

If HbA1c above target

Without Established ASCVD or CKD

Compelling need to minimise weight gain or promote weight loss

Cost is a major issue

To avoid clinical inertia, readiness and proxy decision-making (5-6 months)
CONSIDER INDEPENDENTLY OF BASELINE A1C OR INDIVIDUALIZED A1C TARGET

ASCVD PREDOMINATES
- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary, cardiac, or lower extremity artery stenosis >50%, or LVH)

PREFERABLY
- GLP-1 RA with proven CVD benefit or
- SGLT2i with proven CVD benefit

If A1C above target
- Avoid TZD in the setting of HF
- Choose agents demonstrating CV safety:
 - For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit
 - DPP-4i if not on GLP-1 RA
 - Basal insulin
 - TZD
 - SU

If further intensification is required or patient is now unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV safety:
- For patients on a GLP-1 RA, consider adding GLP-1 RA with proven CVD benefit
- DPP-4i if not on GLP-1 RA
- Basal insulin
- TZD
- SU

HF OR CKD PREDOMINATES
- Particularly HFrEF (LVEF ≤45%)
- CKD: Specifically eGFR 30-60 mL/min/1.73 m² or UACR >30 mg/g, particularly UACR >300 mg/g

PREFERABLY
- SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate
- OR
- If SGLT2i not tolerated or contraindicated or if eGFR less than adequate, add GLP-1 RA with proven CVD benefit

If A1C above target
- Avoid TZD in the setting of HF
- Choose agents demonstrating CV safety:
 - For patients on a SGLT2i, consider adding GLP-1 RA with proven CVD benefit
 - DPP-4i (not saxagliptin) in the setting of HF (not on GLP-1 RA)
 - Basal insulin
 - SU

If further intensification is required or patient is now unable to tolerate SGLT2i and/or GLP-1 RA, choose agents demonstrating CV safety:
- For patients on a SGLT2i, consider adding GLP-1 RA with proven CVD benefit
- DPP-4i if not on GLP-1 RA
- Basal insulin
- SU

COMPELLING NEED TO MINIMIZE HYPOGLYCEMIA
- DPP-4i
- SGLT2i
- TZD

GLP-1 RA with good efficacy for weight loss

GLP-1 RA or DPP-4i

GLP-1 RA or DPP-4i

GLP-1 RA

If A1C above target
- SU or glargine/midazsuline
- TZD

If A1C above target
- SU or glargine/midazsuline
- TZD

COST IS A MAJOR ISSUE
- Insulin therapy: basal insulin with lowest acquisition cost
- Consider DPP-4i or SGLT2i with lowest acquisition cost

UH = Urinary Hypertension; HFrEF = Heart Failure reduced Ejection Fraction; UACR = Urinary Albumin-to-Creatinine Ratio; LVEF = Left Ventricular Ejection Fraction
GLYCEMIC CONTROL ALGORITHM

INDIVIDUALIZE GOALS

A1C ≤6.5%
For patients without concurrent serious illness and at low hypoglycemic risk

A1C >6.5%
For patients with concurrent serious illness and at risk for hypoglycemia

LIFESTYLE THERAPY AND ONGOING GLUCOSE MONITORING (CGM preferred)

INDEPENDENT OF GLYCEMIC CONTROL, IF ESTABLISHED OR HIGH ASCVD RISK AND/OR CKD, RECOMMEND SGLT2I AND/OR LA GLP1-RA

Entry A1C ≥7.5% - 9.0%

DUAL THERAPY
- GLP1-RA
- SGLT2i
- DPP4i
- TZD
- SU/GLN
- Basal Insulin
- Colesvelam
- Bromocriptine QR
- AGi

TRIPLE THERAPY
- GLP1-RA
- SGLT2i
- TZD
- SU/GLN
- Basal Insulin
- DPP4i
- Colesvelam
- Bromocriptine QR
- AGi

Entry A1C <7.5%

Independent of glycemic control, if established ASCVD or high risk, CKD 3, or HFrEF, start LA GLP1-RA or SGLT2i with proven efficacy*

MONOTHERAPY
- Metformin
- GLP1-RA
- SGLT2i
- DPP4i
- TZD
- SU/GLN

Entry A1C >9.0%

SYMPTOMS

NO

DUAL Therapy

YES

INSULIN ± Other Agents

OR

TRIPLE Therapy

ADD OR INTENSIFY INSULIN

Refer to Insulin Algorithm

LEGEND

- ✔ Few adverse events and/or possible benefits
- ▼ Use with caution

1 Order of medications represents a suggested hierarchy of usage; length of line reflects strength of recommendation
2 If not at goal in 3 months, proceed to next level therapy

*CVD: congestive heart failure; HFrEF: heart failure with reduced ejection fraction; LA: long-acting (24 hour duration)

Diabetes Management Algorithm, Endocr Pract. 2020;26(No. 1) 137
Conclusions

• There are many individuals for whom an A1c <7% is clearly reasonable.
• Our best evidence suggests that the A1c level attained and how it is approached is probably the key to achieve optimal outcomes.
• The goal of an A1c less than 7% is fundamentally a tactic to achieve a strategy to minimize the risk of complications while maintaining quality of life.
• Recent CVOTs have shown benefits for patients beyond glycemic control and should be considered in certain population.
• New guidance for glycemic control in the older population is available.