Type 2 Diabetes: Medication Management

Elizabeth Stephens, MD
Providence Medical Group- Northeast
Endocrinology, Dept. of Medical Education
Elizabeth.Stephens@providence.org
November 2016

Disclosures

• None
Topics to Discuss:

- Review of pharmacology of medication classes, with updated information
 - Metformin
 - Sulfonylureas
 - Thiazolidinediones
 - Incretins
 - DPP-4
 - GLP-1
 - SGLT-2 inhibitors
 - Insulin

Drugs for DM Management
TYPE 2 DIABETES
12 Different Classes of Therapy

Reduce Hepatic Glucose Production
- Metformin + XR

Enhance Insulin Secretion/Effect
- Sulfonylureas
 - glipizide, glyburide, gliamepiride
- Meglitinides (short acting)
 - Repaglinide (Prandin), nateglinide (Starlix)
- Insulin injectable

Attenuate Glucose Absorption
- α-glucosidase inhibitors
 - Acarbose (Precose)
 - Miglitol (Glyset)

Other:
- Bromocriptine
- Salsalate
- Colesevelam
- Amylin Analogs (Symlin)

Insulin Sensitizers
- Thiazolidinediones
 - Pioglitazone (Actos), Rosiglitazone (Avandia)

SGLT 2 Inhibitors
- Canagliflozin (Invokana), Dapagliflozin (Farxiga), Empagliflozin (Jardiance)

Incretin Therapies
- GLP Analogs
 - Exenatide (Byetta), XR weekly
 - Lisproglutide (Victoza), Albiglutide (Tanzeum), dulaglutide (Trulicity), lixisenatide (Adlyxin)
- DPPIV Inhibitors
 - Sitagliptin (Januvia), Saxagliptin (Onglyza), Linagliptin (Trajenta), Alogliptin (Nesina)
Case:

- 62 yo with obesity (BMI 34), type 2 diabetes for 5 yrs, no complications, HTN
- On metformin, A1c 8.5% Cr 1.6mg/dL (eGFR 45)
 - Tried glipizide in the past -> hypoglycemia
- Very limited engagement or monitoring
- Doesn’t want insulin, but willing to consider other injectables
- Questions:
 - Is the metformin safe? What to add next?

Metformin

- Mechanism of action (MOA): ↓ hepatic glucose production
- A1c lowering: 1-1.5%
- Cost: $4/month
- Pros: long experience, lack of hypoglycemia, ↓ CVD (UKPDS), ? cancer protection
- Cons: Diarrhea/cramping (?less with XR), B12 deficiency, ? lactic acidosis (very rare), cautious use with comorbidities (acidosis, hypoxia, CHF, renal insufficiency)
FDA Revises Metformin Warnings

NEW Labeling- 2016

• **Then:** Don’t use in women Cr \(\geq 1.4\text{mg/dL} \), Men \(\geq 1.5\text{mg/dL} \)

• **Now:** Before starting metformin, check eGFR
 – Contraindicated if \(<30\text{mL/min/1.73m}^2\)
 – Don’t start if between 30-45mL/min/1.73m2

• If eGFR falls to \(< 45\text{mL/min/1.73m}^2\), assess risk/benefits and consider ↓ dose

• Follow annually, or more often if at risk

www.fda.gov/drugs/drugsafety/ucm493244.htm

Sulfonylureas

• MOA: ↑insulin secretion from beta cells

• A1c lowering: 1-2%

• Cost: Low ($4/month)

• Pros: effective, long-experience, ↓microvascular risk (UKPDS)

• Cons: **hypoglycemia, weight gain, durability,** ? blunts myocardial ischemic preconditioning
More on Sulfonylureas

- **Beta cell burnout:**
 - ADOPT: lost glucose control at 45 months with metformin vs 33 months with glyburide
 - No difference in UKPDS
 - Over 6 yrs, 34% with SU needed insulin, c/w 27% with DPP4
- **Weight gain:** 2-5 kg on average
- **Hypoglycemia:**
 - 6x more hypoglycemia c/w other DM meds

Kahn S, NEJM 2006;355:427; UKPDS 1995;11:1249; Inzucchi S, Diab Obes Metab 2015; Cefalu W, Diab Care 2015

Thiazolidinediones:

- **MOA:** ↑ insulin sensitivity
- **A1c lowering:** 1-1.5%
- **Cost:** low ($30/month + coupon)
- **Pros:** no hypoglycemia, durable, ↑HDL, ↓TG’s, ↓CVD events (PROactive), ?protective in steatohepatitis
- **Cons:** Fluid retention/CHF, weight gain, fractures, ↑LDL, ? MI (rosiglitazone), bladder cancer?
Pioglitazone in Steatohepatitis

- 101 pts with pre-DM or dm, biopsy-proven nonalcoholic steatohepatitis (NASH)
 - Randomized to PBO or pioglitazone 45mg/d for 18 months
- 58% achieved ↓ score of liver disease
 - 51% with resolution of NASH
- Led to reduction in A1c, fasting insulin, AST/ALT, triglycerides
- Also noted: gain of 2.5 kg, no further benefit with longer duration of treatment (up to 36 mos)

Cusi K, Annals IM 2016

Pioglitazone After Stroke/TIA

- 3876 pts with recent stroke or TIA
 - Randomized to placebo vs pioglitazone
- Diagnosed with insulin resistance using HOMA-IR index
- 1°outcome: fatal/non-fatal stroke, MI
- By 4.8 years
 - 1°outcome: 9% (pio) vs 11.8% (pbo)- HR .76
 - DM dev: 3.8% (pio) vs 7.7% (pbo)-HR .48
 - With pio more wt gain, edema and fracture

Kernan WN, NEJM 2016
DPP 4’s

- **MOA**: Inhibitors of metabolism of GLP1/GIP to enhance incretin effect
- **A1C lowering**: .5-1%
- **Cost**: high ($370/month + coupon)
- **Pros**: less hypoglycemia unless used with SU/insulin, oral, option with renal insufficiency (linagliptin)
- **Cons**: angioedema/urticaria, ?pancreatitis, ?↑CHF

GLP-1 Medications

- **MOA**: ↑insulin secretion, ↓glucagon, slows gastric emptying, ↑satiety
- **A1C lowering**: 1-1.5%
- **Cost**: high ($580-650/month+coupon)
- **Pros**: no hypoglycemia, weight loss, **CV benefit**
- **Cons**: injectable, pancreatitis, GI side effects, medullary thyroid cancer in animals, renal issues (exenatide)
GLP-1 Weekly

- Useful to consider in reluctant injectors
- Equivalent benefit to daily dosing
 - Wt loss, A1c lowering, hypoglycemia, SE
 - Review showed better A1c/wt loss with dulaglutide/weekly exenatide, but data biased (Zaccardi F, Ann IM 2015)
- Pick the one tolerated and affordable

SGLT2 Inhibitors:

- MOA: blocks glucose reabsorption by the kidney->glucosuria
- A1c lowering: .5-1%
- Cost: high ($400/month+coupon)
- Pros: no hypoglycemia, ↓weight, ↓BP, durable, CV benefit, renal protection
- Cons: GU infections, polyuria, volume depletion/hypotension, ↑LDL/creatinine
CV Outcomes in DM Medications

- Motivated by high prevalence of CV in diabetes + concerns raised by rosiglitazone
- FDA Guidance to Industry, 2008
 - Sponsors should demonstrate that new type 2 DM drugs should not result in unacceptable CV risk
 - Require inclusion of higher risk CV patients, be long enough to detect adverse CV effects, include in protocol and committees to evaluate

Smith RJ, Diabetes Care 2016

Completed CV Outcome Trials

<table>
<thead>
<tr>
<th>Trial, n of subjects</th>
<th>MACE*</th>
<th>Hosp for CHF</th>
<th>All-cause mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVOR-TIMI (saxagliptin), n=16,492</td>
<td>1.00 (.89-1.12)</td>
<td>1.27 (1.07-1.51)</td>
<td>1.11 (.96-1.27)</td>
</tr>
<tr>
<td>EXAMINE (alogliptin), n=5,380</td>
<td>.96 (.8-1.16)</td>
<td>1.19 (.9-1.58)</td>
<td>.88 (.71-1.09)</td>
</tr>
<tr>
<td>TECOS (sitagliptin), N=14,671</td>
<td>.98 (.88-1.09)</td>
<td>1.0 (.83-1.2)</td>
<td>1.01 (.9-1.14)</td>
</tr>
<tr>
<td>EMPA-REG (empagliflozin), n=7020</td>
<td>.86 (.74-.99)</td>
<td>.65 (.5-.8)</td>
<td>.68 (.57-.82)</td>
</tr>
<tr>
<td>ELIXA (lixisenatide), n=6,068</td>
<td>1.02 (.89-1.17)</td>
<td>.96 (.82-1.16)</td>
<td>.94 (.78-1.13)</td>
</tr>
<tr>
<td>LEADER (liraglutide) n=9340</td>
<td>.87 (.78-.97)</td>
<td>.87 (.73-1.05)</td>
<td>.85 (.74-.97)</td>
</tr>
<tr>
<td>Sustain 6 (semaglutide) n=3,297</td>
<td>.74 (.58-.95)</td>
<td>1.11 (.77-1.61)</td>
<td>1.05 (.74-1.5)</td>
</tr>
</tbody>
</table>
DPP4’s and CHF?

- No increase noted in retrospective cohort of 376,677 pts comparing risks for CHF with saxagliptin/sitagliptin (Toh et al, Annals IM 2016)
- Explanations:
 - Chance finding, differences in studies/patients enrolled, background care provided, differences in drugs

EMPA-REG OUTCOME Trial

- 7028 patients, type 2 DM + CVD
 - Followed 3.1 years
 - Empagliflozin 10mg vs 25mg vs PBO
- Primary outcome: Composite CVD death, non-fatal MI, non-fatal stroke
 - 97% completed study
- With empagliflozin:
 - ↓ rates of CV death from CV causes, CHF admits, death from any cause
 - A1c ↓ : 12 wks: -.54-.6%, 206 wks: -.24-.36%

Zinman B et al, NEJM 2015;373:2117
Results from EMPA-REG

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Event rates</th>
<th>Empagliflozin</th>
<th>Placebo</th>
<th>RRR (95% CI)</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary composite§</td>
<td>10%</td>
<td>12%</td>
<td>13% (1 to 25)</td>
<td>63 (34 to 982)</td>
<td></td>
</tr>
<tr>
<td>CV death</td>
<td>3.7%</td>
<td>5.9%</td>
<td>37% (22 to 50)</td>
<td>46 (34 to 76)</td>
<td></td>
</tr>
<tr>
<td>Nonfatal M (excluding silent M)</td>
<td>4.5%</td>
<td>5.2%</td>
<td>13% (9 to 29)</td>
<td>Not significant</td>
<td></td>
</tr>
<tr>
<td>Secondary composite§</td>
<td>13%</td>
<td>14%</td>
<td>10% (1 to 21)</td>
<td>Not significant†</td>
<td></td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>5.7%</td>
<td>8.3%</td>
<td>31% (17 to 42)</td>
<td>39 (29 to 70)</td>
<td></td>
</tr>
<tr>
<td>Adverse events**</td>
<td>90%</td>
<td>92%</td>
<td>1.6% (0.01 to 3)</td>
<td>Not significant†</td>
<td></td>
</tr>
<tr>
<td>Serious adverse events**</td>
<td>38%</td>
<td>42%</td>
<td>10% (4 to 15)</td>
<td>24 (16 to 58)</td>
<td></td>
</tr>
<tr>
<td>Nonfatal stroke</td>
<td>3.2%</td>
<td>2.6%</td>
<td>24% (8 to 66)</td>
<td>Not significant</td>
<td></td>
</tr>
</tbody>
</table>

ACP JC 1-19-16

SGLT-2’s Cardioprotective?

<table>
<thead>
<tr>
<th>Effect</th>
<th>Likelihood</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ↓ BG</td>
<td>Unlikely</td>
<td>BG a weak CV risk factor, benefit of A1c on CVD takes 10 yrs</td>
</tr>
<tr>
<td>- ↑ fat oxidation or ketone concentration</td>
<td>Unlikely</td>
<td>↑O2 demand per ATP generated</td>
</tr>
<tr>
<td>- Weight loss</td>
<td>Unlikely</td>
<td>Modest changes</td>
</tr>
<tr>
<td>Hemodynamic actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ↓ BP</td>
<td>Likely</td>
<td>Proven CV protection in prior studies</td>
</tr>
<tr>
<td>- Diuretic effect</td>
<td>Likely</td>
<td>Proven against CHF in prior trials</td>
</tr>
<tr>
<td>- Impaired arterial elasticity</td>
<td>Possible</td>
<td>? Some effect of empagliflozin</td>
</tr>
<tr>
<td>- Direct effect on myocardium</td>
<td>Unlikely</td>
<td>No evidence</td>
</tr>
<tr>
<td>- Decreased sympathetic tone</td>
<td>Possible</td>
<td>No ↑ in HR with ↓ in BP and volume</td>
</tr>
</tbody>
</table>

Abdul-Ghani M, Diab Care 2016
Liraglutide and CV Outcomes

LEADER Trial: 9340 pts, followed for 3.8 yrs, randomized to liraglutide or placebo
NNT to prevent one event in 3 yrs was 66 (primary outcome), 98 (death)

In-Progress CVD Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Med</th>
<th>Planned #</th>
<th>Planned date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSTAIN-6</td>
<td>Semaglutide</td>
<td>3297</td>
<td>Jan 2016</td>
</tr>
<tr>
<td>CANVAS</td>
<td>Canagliflozin</td>
<td>4407</td>
<td>June 2017</td>
</tr>
<tr>
<td>CARMELINA</td>
<td>Linagliptin</td>
<td>8300</td>
<td>Jan 2018</td>
</tr>
<tr>
<td>EXSCEL</td>
<td>Exenatide</td>
<td>14000</td>
<td>Jan 2018</td>
</tr>
<tr>
<td>ITCA 650</td>
<td>Exenatide</td>
<td>4000</td>
<td>July 2018</td>
</tr>
<tr>
<td>CAROLINA</td>
<td>Linagliptin</td>
<td>6000</td>
<td>Sept 2018</td>
</tr>
<tr>
<td>DECLARE-TIMI 58</td>
<td>Dapagliflozin</td>
<td>17150</td>
<td>April 2019</td>
</tr>
<tr>
<td>REWIND</td>
<td>Dulaglutide</td>
<td>9622</td>
<td>April 2019</td>
</tr>
<tr>
<td>HARMONY</td>
<td>Albiglutide</td>
<td>9400</td>
<td>May 2019</td>
</tr>
<tr>
<td>CV OUTCOMES ERTUGLIFLOZIN</td>
<td>Ertugliflozin</td>
<td>3900</td>
<td>Oct 2020</td>
</tr>
<tr>
<td>CV OUTCOMES OMARIGLIPTIN</td>
<td>Omariglitin</td>
<td>4202</td>
<td>Dec 2020</td>
</tr>
</tbody>
</table>

Smith RJ. Diab Care 2016
Summary of CVD Data

- Studies note benefit/harm with particular medications
 - Unclear if class effect
- Many payors are responding to this data to make certain brands “preferred”
- Plenty of ongoing trials, so more to come!

Case:

- 62 yo with obesity (BMI 34), type 2 diabetes for 5 yrs, no complications, HTN
- On metformin, A1c 8.5% Cr 1.6mg/dL (eGFR 45)
 - Tried glipizide in the past -> hypoglycemia
- Very limited engagement or monitoring
- Recs: continue metformin, consider adding GLP1 or sulphonylurea
Next Case:

- 68yo with type 2 dm, chronic LBP, GERD, obesity, HTN, on statin
- Meds include: glargine 75units qd
 - Intolerant of metformin, dapagliflozin caused recurrent yeast infections
- A1c now 8.7%, nl renal and liver function
- Wants better control without weight gain. *How about the one on TV?*

New insulin Options

- Degludec (*Tresiba®*):
 - Comes as U100 or U200
 - Transition 1:1 (consider 20% decrease with BID or lower A1c)
 - Dosing flexibility (not given < every 8 hours)
- U300 Glargine (*Toujeo®*):
 - Transition 1:1 from long-acting
 - Often requires dose ↑ 10-15% c/w regular glargine
 - Once daily, same time
Clinical Profiles

<table>
<thead>
<tr>
<th></th>
<th>Duration of Action</th>
<th>Half-life</th>
<th>Steady State</th>
<th>Max Dose</th>
<th>Units/pen</th>
<th>Pens/box</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>U300 Lantus</td>
<td>> 30 hours</td>
<td>18-19 hrs</td>
<td>5 days</td>
<td>80 U</td>
<td>450</td>
<td>3 (1350)</td>
<td>$350</td>
</tr>
<tr>
<td>U100 Degludec</td>
<td>42 hrs</td>
<td>25 hrs</td>
<td>2-3 days</td>
<td>80 U (1U adj)</td>
<td>300</td>
<td>5 (1500)</td>
<td>$450</td>
</tr>
<tr>
<td>U200 Degludec</td>
<td>42 hrs</td>
<td>25 hrs</td>
<td>2-3 days</td>
<td>160 U (2U adj)</td>
<td>600</td>
<td>3 (1800)</td>
<td>$560</td>
</tr>
</tbody>
</table>

When to consider new insulins?

My opinion…

- *Degludec*: shift workers, higher dosing requirements, forgetting insulin doses, long-acting twice/day, variability thought due to long-acting
- *U300 glargine*: long-acting twice/day, forgetting insulin doses, variability thought due to long-acting
Don’t Overlook NPH and Regular Insulin

• Among privately insured adults + DM2
 – 19% using analogs in 2000, c/w 96% in 2010
 – From 2001 → 2015, lispro vials increased from $35 → $234, human insulin $20 → $131

• LOTS of marketing with insulin analogs
 – Emphasizing more physiologic, less hypoglycemia

• **No difference in A1c, no data on outcomes or complications**

Tylee T, Hirsch I, JAMA 2015

Combinations instead of bolus?

• GLP-1 or SGLT2 inhibitors
 – Effective to control BG + weight loss + ↓ hypoglycemia

• TZD also an option
 – ↑ fluid retention, weight gain when used with insulin

<table>
<thead>
<tr>
<th>GLP-1 agonists plus basal insulin (GLP-1 combination) vs other antidiabetic treatments (control) in patients with type 2 diabetes†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HbA1c level, %</td>
</tr>
<tr>
<td>Weight change, kg</td>
</tr>
</tbody>
</table>

ACP JC 1-20-16
Cost Data

Returning to Case

- 68yo with type 2 dm, chronic LBP, GERD, obesity, HTN, on statin
- Meds include: glargine 75units qd
 - Intolerant of metformin, dapagliflozin caused recurrent yeast infections
- A1c now 8.7%, nl renal and liver function

- Recs: consider GLP1
Conclusions

• DM is complicated, on so many levels
• Many new medications to choose from
 – Newer isn’t necessarily better
 • But lots of direct-to-consumer marketing, so
good to have some familiarity
• Cost an ongoing challenge
• More people have diabetes but:
 – Management is improving
 – Fewer complications

THE END