Noninfectious Inflammatory Lung Diseases

Jad Kebbe, MD
Section of Pulmonary, Critical Care and Sleep Medicine
Director of Interstitial Lung Diseases Program
University of Oklahoma Health Sciences Center

ACP – Oklahoma Chapter
October 4, 2019
Relevant Disclosures and Resolution

Under Accreditation Council for Continuing Medical Education guidelines disclosure must be made regarding relevant financial relationships with commercial interests within the last 12 months.

Jad Kebbe

I have no relevant financial relationship or affiliation with commercial interests to disclose.
Learning Objectives

Upon completion of this session, participants will improve their competence and performance by being able to:

1. Appraise the various processes of lung inflammation
2. Differentiate between pathways and etiologies
3. Review examples from different systems
4. Discuss latest data on vaping-related illnesses
Pulmonary physiology

• Lungs are complex and fascinating
• Primary function: gas exchange
• They are essential to living: you can withhold food or water for a long time, but not breathing!
• Intricate balance and symbiotic relation between air, tissue and blood
• Pulmonary circulation is a mixture of high and low blood flows
• There is a constant interaction between heart and lungs
Airway anatomy and physiology
Normal function of pulmonary cells
What in the lungs can become inflamed?

- Airways:
 - Epithelium cells can participate in local cytokine networks
 - They are themselves targets for numerous cytokines
- Glands
- Smooth muscle
- Cartilage
- Interstitial space
- Lymph nodes
- Vessels
- Pleura

Airway inflammation

- Examples of diseases:
 - Asthma
 - Chronic bronchitis
 - Bronchiectasis
 - Cystic fibrosis

- Asthma & chronic bronchitis affect 25 million persons in the USA

- Inflammation of the conducting airways is a feature of these conditions, characterized by airway obstruction and excessive airway secretions
Mechanisms of airway inflammation

• Several mechanisms of inflammation
 • Chemokines:
 • IL-8 mediates neutrophil chemotaxis in airway disorders
 • IL-8 induces eosinophil and T-lymphocyte chemotaxis, to modulate basophil histamine release
 • Cytokines
 • Growth factors
 • Inflammatory mediators
 • Lipid mediators

• Other mechanisms perpetuate the inflammatory process:
 • Neurogenic inflammation
 • Perpetuation of the acute inflammatory response
 • Cycles of airway epithelial cell-mediated & inflammatory cell-mediated recruitment and activation of inflammatory cells
Inflammatory mechanisms and pathobiologic features leading to severe asthma

Inflammatory mechanisms associated with granulocytic inflammation

Type 2 inflammation
- Allergens
 - CRTH2
 - GATA3
 - IL-33
 - IL-4, IL-5, and IL-13
 - IL-4

Non-type 2 inflammation
- Inflammasomes, pollutants, microbes, and viruses
 - CRTH2
 - IL-33
 - IL-6
 - IL-8
 - TNF-α
 - IFN-γ
 - Leukotriene B4

Hyperresponsiveness, remodelling, mucus production, and smooth-muscle constriction and hypertrophy
Pulmonary vascular inflammation

• Vascular circulation in the lungs is unique:
 • Pulmonary circulation: carries deoxygenated blood from the right ventricle to the lungs, and returns oxygenated blood to the left atrium
 • Bronchial circulation: supplies oxygenated blood to pulmonary tissue of larger airways

• Most common pulmonary vasculitides:
 • Granulomatosis with polyangiitis (GPA)
 • Microscopic polyangiitis

• Less common pulmonary vasculitides:
 • Goodpasture
 • Eosinophilic granulomatosis with polyangiitis (previously: Churg Strauss)
Granulomatosis with Polyangiitis

• GPA can affect arteries, arterioles, capillaries, venules, and veins

• Histopathology:
 • Transmural vascular infiltration with inflammatory cells
 • Neutrophils
 • Lymphocytes
 • Multinucleated giant cells
 • Eosinophils (not abundant)
 • Associated with granulomatous inflammation in the surrounding tissue

• Unique features of granulomatous inflammation: palisading histiocytes oriented with their long axis perpendicular to the necrotic center

• May be ANCA positive (c-ANCA; antiproteinase-3)
Microscopic polyangiitis

• Unlike GPA, there are no necrotizing granulomas
• Pulmonary presentations can be similar with capillaritis in diffuse alveolar hemorrhage
• Other manifestations:
 • Nodules
 • Interstitial lung diseases
 • Bronchial inflammation and stenosis
• May be ANCA positive (p-ANCA; antimyeloperoxidase)
• Both diseases require immunosuppression
Closer up view: Neutrophils in the vessel wall
Sarcoidosis

- Multisystem inflammatory disorder
- May affect airways, interstitium, and lymph nodes
- Mechanism: lymphocytic inflammation that causes non-caseating granulomas
- Important to rule out infections
- May affect several organs:
 - Eyes
 - Brain
 - Kidneys
 - Liver
 - Skin
Pneumonitis

• Can be idiopathic or secondary

• Causes of pneumonitis:
 • Connective tissue diseases e.g. systemic sclerosis, rheumatoid arthritis
 • Inhalational injury e.g. toxic fumes, silica
 • Organic antigens e.g. bird feathers, mushroom spores, mold
 • Respiratory distress
 • Surfactant deficiency
 • Drugs e.g. checkpoint inhibitors, monoclonal antibodies, platinum-based chemotherapy
Mechanisms of pneumonitis

- Lymphocyte mediated (CD8+ T cells): hypersensitivity pneumonitis
- Eosinophil mediated: acute and chronic eosinophilic pneumoniae
- Chemical: aspiration
- Radiation
- Collagen deposition and fibroblast proliferation (osteopontin, surfactant protein D, matrix metalloproteinases, TGF-β): fibrosis
- Organic antigens: avian antigens, mold, mushroom
- Inorganic antigens: coal, silica, asbestos, cobalt
Health department confirms first case of vaping-associated lung injury in Oklahoma

The latest weekly tally includes 275 more reports of patients sickened, in 46 states. There are now 12 deaths linked to vaping.
A new culprit in pneumonitis: vaping!

- E-cigarettes are battery-operated devices that heat a liquid and deliver an aerosolized product to the user: electronic nicotine delivery system
- 2006 was the year marking the entry of vaping to the US market
- In 2019, there is an ongoing surge in reported cases of acute lung illnesses, including death
- 84% of patients reported having used tetrahydrocannabinol products in e-cigarette devices
- As of September 2019, the CDC has confirmed more than 350 cases in 36 states, which it declared as an “epidemic of severe lung disease”
Vaping: prevalence and popularity

• 2013: 8.5% of adults report ever having used an e-cigarette/vaping
• 2016: the percentage had increased to 15%
• 2018:

2% of high school students reported current use of e-cigarettes.
5% of middle school students reported current e-cigarette use.

(esp the “Juul” branded vaping devices).

DELNEVO ET AL. PATTERNS OF ELECTRONIC CIGARETTE USE AMONG ADULTS IN THE UNITED STATES. NICOTINE TOB RES. 2016;18(5):715
Juul are cheap, easy to use, and popular

“Starter kit” including device, charging dock, 4 flavor pods runs $29.99.

Private company based out of San Francisco, 2018 revenue of $2 billion.

“Juuling” is a term significant with vaping use the Juul device.
Vaping nomenclature

- **Dripping** refers to dripping a few drops directly onto heating element
- **Dabbing** refers to using a device to inhale vapors from “dabs” which are supposed to be concentrated THC in an oil/wax preparation.
 - **Oil**: oily base extract of marijuana referred as Butane Hash Oil or Honey Oil
 - **Shatter**: glassy solid concentrate of oil that has been heated in a vacuum oven
 - **Budder**: solvent extraction of dried marijuana with an oil product that is “whipped”
 - **Wax**: yellowish cured marijuana that feels waxy
Possible culprits

- Flavorants
 - e.g. diacetyl, a chemical linked to severe lung disease
- Volatile organic compounds
- Heavy metals
 - Nickel
 - Tin
 - Lead

- No one specific liquid or device has been identified as the causative agent
- Illnesses have been reported with the use of nicotine, THC, and CBD
Acute presentation of vaping-related illness

- Nearly 100% of patients have respiratory symptoms
- All patients have bilateral pulmonary infiltrates
- 94% of patients hospitalized
- 32% of patients intubated
- 84% of patients reported using Tetrahydrocannabinol
- Median age: 19 years
- %males: 83%
Acute presentation of vaping-related illness
Cytopathology

- A high level of lipid-laden macrophages with oil red O stain
- Only few biopsies performed
- Identified pathologies and types of pneumonitis:
 - Mild and nonspecific inflammation
 - Acute diffuse alveolar damage and foamy macrophages
 - Interstitial and peribronchiolar granulomatous pneumonitis
 - Chemical pneumonitis
 - Acute eosinophilic pneumonia
 - Acute and subacute hypersensitivity pneumonitis
 - Lipoid pneumonia
 - Metal fume fever
 - Polymer fume fever
The CDC recommends that clinicians report cases of vaping-related illnesses to their state or local health department, as well as the FDA at https://www.safetyreporting.hhs.gov/SRP2/en/Home.aspx?sid=cc7873df-0590-49ec-9d71-ecbf742d34e3 and collect the following information:

- Type of device(s) used (e.g. bottles, cartridges or pods)
- Specific type(s) of liquid used (e.g. nicotine, THC products, flavored fluids)
- Were devices, liquids, refill pods and/or cartridges shared with other people?
- Were old cartridges or pods reused with other homemade or commercial products?
- Were devices used to inhale drugs that were concentrated by heating prior to vaping (i.e., “dabbing”)?
- Details of vaping behavior (e.g. cloud volume, frequency of puffs, ‘zero’ or ‘stealth’ vaping, valsalva at end inhalation).
Organizing Pneumonia

- Can occur without discernible cause (cryptogenic) or associated with connective tissue disorders, drugs, or following an injury
- Usually presents like a typical bacterial pneumonia
 - Fever, cough, malaise, dyspnea
- Patient improves slightly after initiation of antibiotics
- However, condition recurs with similar presentation
- Might be difficult to diagnose
- High lymphocyte count on bronchoscopic lavage
- Chest imaging: peripheral subpleural consolidations with varying locations during different presentations
- Treatment: corticosteroids
Case Study

• 60 y o F with RA presents with mild dyspnea and right pleural effusion
• Pleural pressure turns negative during thora as she develops chest pain
• Fluid analysis:
 • pH: 7.18
 • Glu <10
 • Protein: 4.9
 • LDH: 1681
 • Triglycerides: 21
 • Cholesterol: 388
Pleural Effusion

A very common entity
- 1-1.5 million new cases/y in USA
- 80,000-160,000 new cases of malignant effusions/y

Characteristics of pleural space:
- Pressure: -3 to -5 cm H2O
- Volume: 0.26 mL/kg
- Produced and absorbed by parietal surface
- Parietal lymphatic vessels are responsible for resorption
- Resorption rate can increase 20 times in response to increased fluid formation

Non-Malignant Effusions

Broad variety and many causes

Often poorly understood

Hard to classify

Main divisions:
- Transudate vs exudate
- Unilateral vs bilateral
- Infectious vs non-infectious
- Subclinical vs symptomatic

Exudative effusions

- Infectious: bacterial, viral, tuberculosis-related, fungal, parasitic
- Neoplastic: metastatic disease (e.g., lung cancer, breast cancer, lymphoma, myeloma, ovarian cancer, pancreatic cancer, cholangiocarcinoma), mesothelioma, primary body-cavity lymphoma
- Paramalignant effusions: reactive pleuritis due to underlying lung cancer, airway obstruction or atelectasis, radiation-induced pleuritis
- Reactive: reactive pleuritis due to underlying pneumonia (i.e., parapneumonic)
- Embolic disease: pulmonary embolism
- Abdominal disease: pancreatitis, cholecystitis, hepatic or splenic abscess, esophageal perforation after esophageal varix sclerotherapy
- Cardiac or pericardial injury, including myocardial infarction (after coronary-artery bypass, cardiac surgery, or cardiac ablation procedures), pulmonary-vein stenosis
- Gynecologic: ovarian hyperstimulation, Meigs’ syndrome, endometriosis, postpartum complications
- Collagen vascular disease: rheumatoid arthritis, systemic lupus erythematosus, Sjögren’s syndrome, familial Mediterranean fever, eosinophilic granulomatosis, granulomatosis with polyangiitis
- Medications: nitrofurantoin, dantrolene, methysrgide, dasatinib, amiodarone, interleukin-2, procarbazone, methotrexate, clozapine, phenytoin, β-blockers, ergot drugs
- Hemothorax
- Chylothorax (most commonly seen after trauma or in patients with lymphoma)
- Sarcomiosis
- Lymphoplasmacytic lymphoma
- Cholesterol effusions (commonly seen in tuberculosis, rheumatoid effusions, and any other chronic pleural effusion)
- Miscellaneous: benign asbestos pleural effusion, yellow nail syndrome, uremia, drowning, amyloidosis, electrical burns, iatrogenic effusion, capillary leak syndromes, extramedullary hematoopoiesis
Non-Malignant Effusions

Management predominantly focuses on relief of symptoms
Mortality often depends on the underlying cause
They cause substantial morbidity
Adequate treatment relies on identifying an underlying etiology

<table>
<thead>
<tr>
<th>Transudative effusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
</tr>
<tr>
<td>Cirrhosis</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td>Peritoneal dialysis</td>
</tr>
<tr>
<td>Hypoalbuminemia (typical serum albumin, <1.5 mg/dl)</td>
</tr>
<tr>
<td>Atelectasis</td>
</tr>
<tr>
<td>Superior vena cava obstruction</td>
</tr>
<tr>
<td>Trapped lung</td>
</tr>
<tr>
<td>Sarcoidosis</td>
</tr>
<tr>
<td>Peritoneal dialysis</td>
</tr>
<tr>
<td>Myxedema</td>
</tr>
<tr>
<td>Cerebrospinal fluid leak or ventriculopleural shunt</td>
</tr>
<tr>
<td>Urinothorax</td>
</tr>
<tr>
<td>Pulmonary arterial hypertension</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td>Pericardial disease</td>
</tr>
<tr>
<td>Extravascular migration of central venous catheter</td>
</tr>
</tbody>
</table>
Common Causes

More than 50 etiologies

Transudative: cardiac (CHF, constriction), renal (nephrotic Sd), or hepatic (cirrhosis, hypoalbuminemia) origin

Exudative: excess inflammation (malignancy, infection, autoimmune, pancreatitis, PE, post-CABG, esophageal rupture...)

The most common cause of a transudate (and effusions as a whole) is **heart failure**

Up to 57% of patients with pneumonia develop an effusion
Conclusion and Clinical Pearls

• Inflammation can affect any lung structure

• Certain pulmonary inflammatory conditions are associated with systemic manifestations

• Beware of vaping associated pulmonary inflammation and consult a specialist early
New commandment

Thou shalt not vape!
Thank you!