Disclosures:

• I have deep discussions with my dogs when no one is around
• I am afraid of caves
Objectives:

• Discuss definitions of acute and chronic urinary retention – common conditions experienced in the emergency room and inpatient setting
• Review epidemiology, risk factors and common conditions causing urinary retention
• Brief review on the physiology and anatomy of micturation
• Develop a common stepwise approach to diagnosis and initial management
• Review common clinic scenarios experienced in the inpatient setting
Definitions:

• AUA – American Urological Association
• ICS – International Continence Society
• UDS – urodynamic testing
• LUTS – lower urinary tract symptoms
• BPH – benign prostatic hypertrophy
• BOO – bladder outlet obstruction
• DU – detrusor underactivity
• POP – pelvic organ prolapse
• **Vignette 1:**

 • 69 year old otherwise healthy man – POD#1 following left total knee arthroplasty
 • Foley catheter removed - unable to void for 6 hours

• **Considerations:**

 • How to determine significance ?
 • Likely underlying etiology ?
 • Initial management ?
 • Likelihood of resolution ?
 • Need for urological consultation ?
Introduction 1:

• Acute urinary retention (AUR) – one of the most important and common complications of BPH in men
• Also affects women – much less frequently
• Definition – PAINFUL inability to void without incontinence
 • “painful, palpable or percussable bladder, when patient unable to pass urine” – ICS
 • Presentation of pain is key
• AUA – published guidelines on BPH and UDS but not for AUR
Introduction 2:

• Chronic urinary retention
 • AUA definition – non-neurogenic urinary retention with a Post Void Residual volume of > 300 ml
 • Persistent for 6+ months
 • Documented on two separate occasions
• Painless
• Associated with incontinence
Incidence

• Overall incidence – male population – first episode AUR – 2.2-8.5 events per 1000 men per year
• 13:1 male to female ratio
• Men with LUTS – 18-36 events per 1000 men per year
• Age as risk factor:
 • 70 years old – 10% of men have episode of AUR
 • 80 years old – 33% of men have episode of AUR
• Women – 3 events per 100,000 women per year

Economic cost/burden of AUR 1:

• Nationwide Emergency Department Sample – 2006-2009
 • 1.2 millions visits by men for chief complaint of LUTS
 • 45% of which underwent urinary catheterization
 • 2009 – ED management of LUTS - $495 billion dollars
 • BPH does not equal AUR – initiation of treatment for BPH often coincides with clinical event such as AUR
 • Outpatient economic burden - ?????

• Patient morbidity
 • AUR – rated as traumatizing as new diagnosis of stroke or MI
 • Prolonged catheterization – significant deterioration of QOL

• Economic impact of AUR in women – poorly defined due to low incidence
Economic Cost/Burden of AUR 2:

• Appropriate treatment of AUR – results in significant cost saving to the health care system

• 2003-2008 – Medicare/Medicaid patients
 • Every month of 5-alpha reductase therapy decreased overall BPH related costs by 15%/month
 • Reduces rates of AUR and need for prostate surgery by 14%, 11% respectively

• MTOPs trial – demonstrated significant reductions in need for surgery, retention events and bleeding events with dual medical therapy with alpha blockers and 5ARIs
Fig. 1: Distribution of α_1-adrenergic receptors in the lower urinary tract and site of action of α_1-adrenergic receptor blockers. Selective agents target receptors predominantly localised to the bladder and prostate. Non-selective agents may have more systemic effects.
5 Alpha Reductase Inhibitors

- Dutasteride
- Finasteride

Why 5-alpha reductase inhibitors?

- 5-alpha reductase inhibitors (dutasteride and finasteride) reduce prostate size
 - Mechanism of action:
 - Testosterone → Dihydrotestosterone (DHT)
 - They also lower PSA Levels
 - Therefore, may cause false-negative due to lowered PSA level when there is cancer
 - Hence, screening evaluation includes medication use

Neuroanatomy of Voiding
• Vignette 2:

• 83 year old woman with dementia – presents to ED with confusion, lethargy, poor oral intake
 • Febrile, WBC 17 on admission
 • Unable to void for urine specimen – catheterized volume 400 cc
 • UA with 40 rbc, 23 wbc, +nitrite, +LE and bacteria
 • PMH: DMII, CVA, CAD, hysterectomy

• Considerations:
 • How to determine significance?
 • Likely underlying etiology?
 • Initial management?
 • Likelihood of resolution?
 • Need for urological consultation?
Functional Classification of Voiding Dysfunction (Wein)

Failure to store
- Bladder disorder
 - DO/OAB
 - Poor compliance
- Outlet disorder
 - Iatrogenic – post op
 - Urethral hypermobility
 - ISD

Failure to empty
- Bladder disorder
 - Neurogenic
 - Myogenic
 - Psychogenic
 - Idiopathic
- Outlet disorder
 - Anatomic – prostate, bladder neck, urethra
 - Functional – dysfunctional voiding, sphincter dyssynergia
Risk factors for AUR

• Age
• History of bothersome LUTS
• History of AUR
• General medical conditions
 • DM
 • Psychiatric illness
 • Neurologic disease
 • CVA
• Urologic abnormalities – BPH, prostate cancer, POP, urethral stricture, prior surgery/radiation, urethral diverticulum, vulvovaginitis
Medications

• Antiarrhythmics
• Anticholinergics
• Antidepressants
• Antihistamines
• Antihypertensives
• Parkinsons medications
• Estrogen/testosterone medications
• Muscle relaxants
• Alpha, beta agonists
• Sedatives – narcotics, benzodiazepenes
Risk factors for Provoked AUR

• Cystitis/infection
• Excessive fluid intake, alcohol ingestion
• Cold exposure
• Traveling/prolonged immobilization
• Constipation
• Instrumentation
• Pain
• General/spinal anesthesia
• Spinal disk disease/compression
• Bladder overdistension
• **Vignette 3:**

 • 70 year old man with known metastatic prostate cancer – admitted for hydration while undergoing docetaxel chemotherapy
 • Known metastatic lesions in pelvis, thorax and spine
 • Voiding well prior to admission
 • PSA <0.1
 • Several days of constipation
 • Acute onset retention, tingling/numbness of scrotum

 • **Considerations:**
 • How to determine significance?
 • Likely underlying etiology?
 • Initial management?
 • Likelihood of resolution?
 • Need for urological consultation?
Diagnosis 1:

- History
 - Timing/onset of symptoms
 - Pain
- LUTS evaluation – antecedent to AUR event
 - Storage symptoms – frequency, nocturia, urgency, incontinence
 - Stress, urge, mixed incontinence
 - Nocturnal enuresis
 - Overflow incontinence
 - Bladder sensation
 - Voiding/obstructive symptoms – poor/intermittent stream, spraying, dribbling, hesitancy, straining
- *Gross hematuria, urethral pain, dysuria*
- Relevant medical history, medication evaluation
Diagnosis 2:

• Physical exam:
 • bladder percussion, palpation, SP tenderness
 • DRE in male – size, tenderness, nodularity
 • Vaginal exam in female – POP, inflammation, cysts
 • Focused neuro exam (anal and levator tone, genital sensation)
• Diagnostics – Cr/BUN, UA/Ucx, bladder scan vs catheterized PVR
• PSA:
 • acute measurement during AUR – may be falsely elevated due to inflammation
 • Prior level – helpful to estimate prostate size/risk for BPH
 • Grossly elevated – consider possibility of advanced prostate cancer
Further diagnostics?

- **Bladder US** – required if morbid obesity, trauma preclude bedside US or catheterization
 - Can evaluate bladder wall thickness, prostate size, median lobe, distal ureteral dilation

- **Renal US** – only indicated when renal failure is present

- **Pressure flow studies**
 - **AUA LUTS guideline:**
 - **PVR** – “in patients with LUTS as a safety measure to rule out significant urinary retention”
 - **Uroflow** – “initial and ongoing evaluation of male patients with LUTS when abnormality of voiding/emptying is suggested”
 - **Pressure flow studies** – “to determine if urodynamic obstruction is present when invasive, potentially morbid or irreversible treatments are considered”

- **EUA** – PFS reserved for men considering surgery who 1. cannot void > 150 ml or 2. who have a PVR >300 ml or 3. age > 80 years old
Interpreting pressure flow studies:

- Used to distinguish between bladder outlet obstruction vs detrusor underactivity*

- Two values required – Qmax and Pdet at Qmax
 - 1. Bladder outlet obstruction index
 - BOOI = Pdet@Qmax – 2(Qmax)
 - High pressure and poor flow = obstruction
 - 3 groups
 - > 40 obstructed
 - 20-40 equivocal
 - < 20 unobstructed
 - 2. Bladder contractility index – characterizes detrusor strength
 - BCI = Pdet@Qmax + 5(Qmax)
 - Low pressure and low flow = poor contractility
 - 3 groups
 - > 150 – strong
 - 100-150 normal
 - < 100 weak

- Useful method to characterize those who may benefit from surgery

Bladder outlet obstruction index

![Bladder outlet obstruction index diagram](image-url)
Bladder contractility index
• **Vignette 4:**

 • 82 year old woman admitted with shortness of breath
 • CT PE protocol in ED reveals large pulmonary embolus – admitted for initiation of anticoagulation with heparin drip
 • Becomes therapeutic on heparin – develops gross hematuria for 4 hours then subsequently complains of inability to urinate and bladder pain
 • UA on admission demonstrated 25 RBCs, no evidence of infection

 • **Considerations:**
 • How to determine significance ?
 • Likely underlying etiology ?
 • Initial management ?
 • Likelihood of resolution ?
 • Need for urological consultation ?
Immediate Treatment

• 1. Bladder decompression – urethral or SP catheter
• 2. Initiation/continuation of alpha blocker therapy
• 3. Initiation of 5 alpha reductase inhibitor
 • Prostate volume > 40 cc
 • PSA > 1.5 ng/ml
• 4. Remove any provocative factors
1. Bladder decompression

- Exclude trauma/urethral disruption – if suspected perform RUG
 - History of pelvic trauma
 - Blood at meatus
- Standard catheter (16fr) – initial attempt
- Coude – suspect enlarged prostate
- Smaller catheter – suspect stricture
- Trauma/false passage – flex cystoscopy w/ guidewire placement
- SP tube placement – full bladder + Trendelenburg + US guidance to identify bowel loops and reduce bowel injury
 - 2-3% rate of bowel injury 1.8% mortality rate*
 - Caution with distorted pelvic anatomy, prior surgery, obesity, undistended bladder

2. Initial Medical Management

- Alpha blockers – recommended for all male patients with AUR
 - Retention – results in guarded urethral sphincter and increase sympathetic tone
 - Trial without catheter – successful in 60% on alpha blockers vs 40% placebo
 - RR of recurrent retention – 0.7 – tamsulosin, alfuzosin, silodosin
 - Meta-analysis of 13 RCTs – 1.6 risk ratio favoring successful voiding of alpha blocker over placebo
 - Stat significant reduction in future AUR events w/ alpha blocker therapy
 - No head to head trials of alpha blockers against each other, only vs placebo
 - Time to effect variable – 24 hours to 7 days

- Women with AUR – limited data available – some evidence for increased flow rates and decreased PVRs
 - Women with primary bladder neck obstruction
 - Caveat – majority of female AUR cases – due to DU

- 5 alpha reductase inhibitors – no effect on successful void trial but reduce re-catheterization rates and improve progression of BPH in men w/ prostate volume > 40 ml and PSA > 1.5 ng/ml
Trial of void

• Much variability across studies
• No consistent relationship between duration of catheter and success of void trial
• Catheterization > 3 days – no affect on success of void trial – was associated with prolonged hospitalization and increased morbidity
• Decreased success of voiding (80% vs 77%) with catheterization > 5 days
• CONSENSUS – 24-48 hours is minimal time to wait, but 3-5 days seems to be optimal timing for void trial
• CIC – optimal if patient able to perform as allows multiple void trials until patient resumes voiding spontaneously
• Controversy w/ catheters – 19% of healthcare associated infections are UTI with half attributed to catheter use
 • Symptomatic UTI – positive urine culture, pyuria, systemic symptoms – fever, SP pain, dysuria, urgency, hematuria
Post obstructive diuresis

- Typically seen following decompression of long standing/chronic retention, bilateral obstruction or obstruction in solitary kidney
- At risk patients – HTN, volume overload/edema, weight gain
- Excessive polyuria - > 200 ml/hour
- Excessive salt, water excretion – inappropriate diuresis of water due to impaired concentrating ability of kidney – temporary resistance of collecting duct to ADH, impaired Na reabs throughout nephron
- Treatment – careful monitoring of UOP, electrolytes and volume status
 - Replace UOP at 80% with ½ NS until daily total UOP about 3 L
 - Monitor/replace K, Mg as needed
Treatment Algorithms

1. Evaluation

2. Immediate Treatment

3. Management
Evaluation

• **History** – timing, spontaneous vs provoked, storage and voiding symptoms, incontinence, sensation, hematuria/clots, urethral/bladder/pelvis pain, dysuria

• **Physical** – palpable bladder, SP pain, DRE, vaginal exam, neuro exam

• **PVR** – scan vs catheterized

• **Labs** – BUN/Cr, UA/Ucx, eval for prior PSA value

• **Imaging** – RBUS if renal failure

• **Differential** – Functional classification – BOO vs DU vs combination
Immediate Treatment

- **Bladder decompression** – indwelling urethral catheter, CIC, SP
- **Alpha blocker** – initiate therapy in all men and select women
- **5 alpha reductase inhibitor** – initiate therapy in men with prostate volume > 40 ml or baseline PSA > 1.5 ng/ml
- **Acute surgical intervention** – TURP – indicated for prostatic abscess
Management

• Trial without catheter – at 3-5 days following uncomplicated AUR, if CIC being performed evaluate PVRs for resumption of spontaneous voiding

• Urodynamic evaluation
 • Consider for – cannot void > 150 ml, PVR > 300 cc, age > 80 or < 50
 • Perform when considering invasive, potentially morbid or irreversible treatment
 • Calculate BOOI and BCI

• Long term interventions – discuss risks, benefits, alternatives in regard to bladder outlet procedure, indwelling catheter, CIC. Consider Sacral neuromodulation or Percutaneous posterior tibial nerve stimulation for non-obstructive urinary retention
Surgical Intervention

• Indications
 • those who fail to void spontaneously with void trial
 • Bothersome LUTS, failed medical therapy

• Caution regarding TURP in setting of AUR
 • AUR -> TURP = 56% failed postop void trial
 • No AUR -> TURP = 28% failed postop void trial

• Pressure flow studies – may identify patients at risk for failure to void

• Decision to proceed with surgery:
 • 1. patient treatment goals – willingness to incur surgical risk to be catheter free
 • 2. ability to perform CIC
 • 3. satisfaction/dissatisfaction with indwelling catheter
Investigational behavioral and medical therapies for AUR

• Few studies – all with small sample sizes – awaiting reproduction
• Caffeine – increased voided volumes and decreased need for subsequent catheterization
• Hot packs to abdomen – decreased postop retention episodes
• PDE5 inhibitor therapy + alpha blockers = no effect on spontaneous voiding after AUR events
• Combo alpha blocker therapy
• DES, ketoconazole – added to alpha blocker therapy – improved rates of spontaneous voids after AUR
Strategies to Increase Detrusor Contractility

• Medications
 • Acetylcholinesterase inhibitors – prolong effects of Ach
 • Cholinergics – bethanecol, carbachol – mimic Ach effects
 • No proven effect
 • Significant side effects – flushing, sweating, excessive salivation
 • Prostaglandins – shown to improve bladder contractility – only with intravesical instillation

• Sacral nerve stimulation
 • FDA approved for:
 • Non obstructive urinary retention – Fowler’s syndrome, neurogenic bladder from SCI
 • Mechanism – suppression of hyperactive guarding reflex, reduction in sphincteric tone
 • Decreased PVR by 236 ml, improved voided volume 300 ml*
 • Refractory overactive bladder
 • Chronic fecal incontinence

• Posterior tibial nerve stimulation – third line therapy for OAB
 • Mech – nerve fibers from L4-S3 – may work similarly to SNS – not FDA approved ye

Summary

- Initial management of AUR – bladder decompression
- Alpha blocker therapy – initiated in all male patients and select female patients with suspected bladder neck obstruction
- CIC – reasonable alternative to indwelling catheter
- Trial of void – at 3-5 days following initial bladder decompression
URINARY RETENTION TREATMENT ALGORITHM

Acute: Painful inability to void, +/- without incontinence
Chronic: Non-painful, small volume voids, +/- incontinence

History and Physical
Post-Void Residual Blood urea nitrogen/Creatinine
+/- Urinalysis
+/- Prior PSA
+/- Renal ultrasound

Bladder Decompression
- Indwelling urethral catheter
- Intermittent catheterization
- Medical Therapy
 - Alpha-1 blocker: all men and select women
 - 5-alpha reductase inhibitor: consider if prostate >40 mL or baseline PSA >1.5 ng/mL

Trial Without Catheter
- Suggested at 3 to 5 days for uncomplicated retention
- Monitor catheterized post-void residuals

Urodynamic Evaluation
- When invasive, potentially morbid or irreversible treatments are considered
- Consider if cannot void >150 mL, PVR >300 mL, age >80 years, men <50 years

Calculate Bladder Outlet Obstruction Index (Pdet@Qmax – 2*Qmax)
(>40 obstructed, 20 to 40 equivocal, <20 unobstructed)

Calculate Bladder Contractility Index (Pdet@Qmax + 5*Qmax)
(>150 strong, 100 to 150 normal, <100 weak)

Detrusor Failure

Combination Failure

Outlet Obstruction

No Contraction Unsure if Obstructed

Weak Contraction Suspect Obstructed

Strong Contraction Clearly Obstructed

If Satisfied
- No additional intervention

Non-Obstructed Urinary Retention
- Sacral neuromodulation
- Percutaneous posterior tibial nerve stimulation (non-FDA approved)

Indwelling vs CIC

BOO Procedure

NO
Resume Indwelling vs CIC

Passed TWOC?

YES
Treatment Goals Met