A Case of Early-onset Stroke

Cheng Han Chung MD, PGY-1 Internal Medicine

June 2nd 2017
Current Admission

34 year old presented with 3 days of diffuse headache

Associated Symptoms:
 • Nausea
 • Memory loss
 • Difficulty with word finding

Past Medical History: Stroke at 31, preceded by similar headache

Family History:
 • Mom with seizures and stroke at 25 and deceased at age 50 from another CVA.
 • Maternal aunt with stroke at early age and seizures
Current Admission

Physical Exam
- Vitals normal. Height 5’2’’
- Mild dysarthria
- Slow response to questions
- Difficulty recalling details of past several days
- Strength and sensation intact

Pertinent Diagnostic Studies
- Serum Lactic acid level of 7.4
- Echocardiogram revealed mildly reduced EF
- MRI negative for acute findings
Age 31 - First admission

Symptoms:
- Headache
- Memory loss
- Difficulty with word finding

Exam
- Stable vitals without any neurologic deficits

Work ups
- CBC, CMP, lipid profile, A1C, echocardiogram all unremarkable
- MRI showed increased FLAIR at left posterior parietal, occipital, temporal lobes and right cerebellum
- **Multi-lobar involvement NOT following vascular pattern**
MRI FLAIR
MRI FLAIR
Our Thoughts

Further Diagnostic Studies

- **Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) suspected**
- CSF Lactic acid to pyruvic acid ratio of 29.2, (>20 suggests mitochondrial dysfunction)
- Muscle biopsy and genetic testing ordered
Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS)

- Maternally inherited mitochondrial disease with multi-system involvement

- Diagnosis criteria
 - Stroke-like episode before age 40
 - Encephalopathy secondary to seizure or dementia
 - Mitochondrial myopathy evident by lactic acidosis or ragged-red fibers

- Additional confirmatory criteria (2 out of 3)
 - Normal early development
 - Recurrent headaches
 - Recurrent vomiting
Prevalence/ Onset

Northern Finland: 16.3: 100,000
Australian 236: 100,000

<table>
<thead>
<tr>
<th>Age of Onset (87 individuals)</th>
<th>Number of Individuals</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 years</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2-5 years</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>6-10 years</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>11-20 years</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>21-40 years</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>>40 years</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Symptoms

• CNS
 • Stroke-like episodes (99%)
 • Seizures (96%)
 • Hemiparesis (83%)
 • Headache (77%)
 • Memory impairment (50-74%)

• Musculoskeletal
 • Exercise intolerance (100%)
 • Limb weakness (89%)
 • Short stature (82%)
 • Myoclonus (38%)

• Endocrine
 • Diabetes Mellitus (5%)

• GI
 • Nausea/vomiting (77%)

• Cardiac
 • Congestive heart failure (18%)
 • Wolf-Parkinson-White (14%)
Age 34- Third admission

Symptoms:
- Altered mental status, headache

Exam
- Alert, but oriented x0, complaining of hearing loss, photophobia, nausea

Work ups
- EEG showed non-convulsive status epilepticus
- Loaded with lacosamide and levetiracetam
- Received L- arginine infusion
Symptoms

• CNS
 • Stroke-like episodes (99%)
 • Seizures (96%)
 • Hemiparesis (83%)
 • Headache (77%)
 • Memory impairment (50-74%)

• Musculoskeletal
 • Exercise intolerance (100%)
 • Limb weakness (89%)
 • Short stature (82%)
 • Myoclonus (38%)

• Endocrine
 • Diabetes Mellitus (5%)

• GI
 • Nausea/vomiting (77%)

• Cardiac
 • Congestive heart failure (18%)
 • Wolf-Parkinson-White (14%)
Symptoms

• CNS
 • Stroke-like episodes (99%)
 • Seizures (96%)
 • Hemiparesis (83%)
 • Headache (77%)
 • Memory impairment (50-74%)

• Musculoskeletal
 • Exercise intolerance (100%)
 • Limb weakness (89%)
 • Short stature (82%)
 • Myoclonus (38%)

• Endocrine
 • Diabetes Mellitus (5%)

• GI
 • Nausea/vomiting (77%)

• Cardiac
 • Congestive heart failure (18%)
 • Wolf-Parkinson-White (14%)
Genetics

• Most common defect - m3243A>G (80% of cases) in the MT-TL1 gene
 • Mitochondrially encoded tRNA Leucine 1
 • Possibly affecting complex I and IV, however, no clear mechanism identified so far
 • Organs with high energy demand
• Maternally inherited with heteroplasmy and variable symptoms
 • Study in Japan has shown some correlation between increased mutation load in muscle tissue to symptoms

• Our patient had 83% m3243A>G on muscle biopsy
Muscle Biopsy & Ragged Red Fibers

-Mitochondria proliferation that stains with modified Gomori trichome stain

-Biopsy did not show the characteristic RRF pattern on trichome

-Sent for electron microscopy and other mitochondrial stains
 - Enlarged mitochondria with concentric cristae
 - Pericrystalline inclusions within the mitochondria
 - Mitochondrial aggregates on NADH and SDH stain

-Supportive of mitochondrial dysfunction and diagnosis of MELAS
Treatment

There is no specific curative therapy for MELAS, treatment largely involves symptomatic management.

• Seizure control is treated with AEDS
• Migraine treated with standard analgesic therapy
• Physical therapy to decrease symptoms of exercise intolerance
• L-Arginine infusion therapy during acute phase has been shown to decrease symptoms
• Oral L-arginine also has been shown to decrease frequency and severity of stroke-like episodes
• Other supplements such as Co-enzyme Q10, creatine, L-carnitine have all been used to support the ETC, however evidence is limited
Prognosis

• Residual deficits from stroke like episodes eventually lead to impaired motor, vision and mentation.
• Symptomatic individuals have 17 fold mortality rate compared with asymptomatic carriers
• Average age of death in affected individuals 34.5±19 yrs
• Median survival time 16.9 years from age of symptom onset
Therapy under investigation

Because the defect is located on the mitochondrial DNA, transplant of fertilized zygote nucleus to a donor egg should bypass the inheritance.

- Proof of this concept has been shown in vitro.
Take Home point

- Keep metabolic syndromes in mind when a patient presents with early onset stroke without other risk factors.

- Lactic acidosis can also be from mitochondrial dysfunction.
Questions?