The Internist’s Approach to the Non Healing Wound

Narayan Kulkarni, DO
Medical Director
FMH Center for Advanced Wound Care and Hyperbaric Medicine
Frederick Memorial Health System
Frederick, MD
Conflict of Interest Disclosure

The presenter does not have any relationship, financial or otherwise, with any commercial interests.
Objectives

- Learn how to do a basic wound assessment
- Learn to recognize the presentations of the most common types of wounds
- Identify common barriers to wound healing
- Be aware of different types of therapies used in wound healing
 - Dressings, hyperbaric oxygen, debridement, negative pressure therapy, skin substitutes
Chronic Wounds

- Affect 5.7 million patients annually
- Account for $20-25 billion in healthcare costs annually
- Patients often have other significant comorbidities
- Quality of life issues
 - Appearance
 - Odor
 - Social stigma
 - Financial costs
 - Emotional and physical stress/pain
 - Disability for patient and lost productivity for patients and caregivers
The Wound Care/Hyperbaric Medicine subspecialty

- Wound Healing and Hyperbaric Medicine has evolved into a subspecialty
- “Wet to Dry” dressings are practically a thing of the past
- New modalities have transformed the care
 - Hyperbaric oxygen
 - Skin substitutes
 - Negative Pressure therapy
 - Enzymatic debridement
 - Effective dressings tailored to address needs of the wound
Wound Care/Hyperbaric Medicine

- 900 HBO facilities nationwide and ?? Wound clinics
- Multidisciplinary team of physicians and clinicians
- “CWS” certification
- Streamlined patient flow to promote
 - Evaluation
 - Treatment
 - “One stop shop”
Wound Healing
A Quick Review of Wound Healing

Inflammatory Phase
- 0 to 3 days
- Phagocystosis (WBC like macrophages, neutrophils ingest bacteria, dead tissue)
- Vasodilation (WBC release inflammatory markers to cause swelling, redness)

Proliferative Phase
- 3 to 21 days
- Fibroblasts produce collagen, new blood vessel growth, rich vascular network in collagen matrix
- Contraction and epithelialization, wound edges move toward the center to close the wound

Maturation/Remodeling
- Scar develops tensile strength
- 80% strong as original skin
Compromised Wound Healing

- Arterial Blood supply occlusion
- Tissue ischemia
- Hypoxia and CO2 retention
- Microcirculation changes
- Loss of vascular membrane integrity
- Leakage of intravascular fluids
- Edema
Assessment of Chronic Wounds
Types of Chronic Wounds

- Vascular ulcers
 - Arterial
 - Venous
 - Lymphedema
- Neuropathic/diabetic foot ulcers
- Pressure or decubitus
- Traumatic
- Surgical

- Atypical
 - Bullous pemphigoid
 - Vasculitides
 - Vasculopathy
 - Malignancy
- “Internal” wounds
 - Radiation injury
How do you Assess a Wound?

- **Appearance**
 - Irregular or uniform?
 - Draining heavily or dry?
 - Eschar
 - Granulation tissue
- **Size**
 - Area, Depth, Undermining
 - Sinus tracts, fistulae
- **Location**
 - Leg, ankle, toes, trunk
- **Drainage**
 - Degree, color, consistency
 - “Bioburden” and necrotic tissue
- **Pain**
- **Temperature, erythema**
- **Surrounding skin**
 - Maceration, eczematous, induration
Barriers to Wound Healing

- Vascular dysfunction (arterial or venous)
- Bioburden and infection
- Scarring and fibrosis
- Edema
- Pressure
- Necrotic tissue
- Host factors
 - Nutrition, comorbidities, social history
 - Medications: steroids, antirheumatic agents, chemotherapy
How are those barriers treated?

- Vascular correction – angioplasty or venous intervention
- Bioburden and infection – routine debridement, antibiotics, drainage control
- Scarring and fibrosis – medications, surgery, negative pressure therapy
- Edema – compression therapy
- Pressure - offloading
- Necrotic tissue – routine debridement, bedside or OR
- Host factors
 - Nutrition – dietary evaluation, lean body mass monitoring
 - Comorbidities – control
 - Social history – smoking cessation, assistance at home
 - Medications – drug holidays if possible
Vascular Ulcers

- Healthy Vein Valves & Correct Blood Flow
- Damaged Vein Valves & Incorrect Blood Flow

- Normal artery
- Artery narrowed by atherosclerosis
- Plaque

Blood flow
Venous Ulcers

Etiology
- Typically from long standing venous hypertension
- Distension damages vein walls leading to exudation of fluid
- Valvular incompetence
- Chronic inflammation and ischemia from high interstitial fluid pressure

Location
- “Gaiter” (medial aspect of leg from calf to below ankle) distribution of both legs

Ulcer Appearance
- Shallow with irregular borders
- Increased drainage
- Fibrotic scar tissue
- Bioburden
Venous Ulcers

- **Skin exam**
 - Edematous
 - Stasis changes, pitting, lipodermatosclerosis, atrophie blanche
 - Hemosiderin staining
 - Palpable pulses

- **Symptoms**
 - Painful, especially when debrided
 - Recurrent cellulitis

- **Medical History**
 - Family History of “vein problems”, personal history of DVTs/phlebitis
 - “Standing” Occupations
 - Multigravid females
Venous Ulcers

- **Diagnosis**
 - Presentation
 - Confirm by Venous Studies, test for insufficiency/reflux

- **Treatment**
 - Venous intervention (eg. closure)
 - Compression therapy
 - Multilayer bandaging systems
 - Local wound care: debridement, dressing selection
 - Pain control
 - Medications, eg. pentoxifylline
 - Negative pressure
 - Skin substitutes and/or grafting
Compression Therapy

- Application of “4 layer” compression wraps
Lymphedema Ulcers

- **Etiology**
 - Develop from lymphedema and “phlebolymphedema”
 - Excessive accumulation of interstitial fluid and poor lymph flow
 - Any disruption of lymph channels
 - Primary (congenital) or Secondary classification
 - Secondary lymphedema often from obstructive or inflammatory processes
 - Tumor, surgery, infectious, venous insufficiency

- **Location**
 - Usually in the extremities, can move into trunk

- **Ulcer Appearance**
 - Ulcers are irregular, heavy drainage
 - No specific predilection to location
Lymphedema Ulcers

- **Skin Exam**
 - Stasis changes
 - Edematous and fibrotic
 - Papillomatosis, dimpling causing smooth but bumpy skin
 - “Stemmer’s sign”

- **Symptoms**
 - May or may not be painful
 - Recurrent cellulitis

- **Medical History**
 - Multiple comorbidities
 - Morbid obesity is common
Lymphedema Ulcers

- **Diagnosis**
 - Clinical
 - Important to rule out other causes of edema, eg. CHF, RI

- **Treatment**
 - Compression therapy
 - Manual lymphatic decongestive therapy
 - Lymphedema pumps
 - Avoid diuretics!
Arterial Ulcers

- **Etiology**
 - Pressure – shoewear, braces
 - Trauma
 - Embolus – acute event
 - Ischemia – progressive PAD
 - Infection
 - Poor healing due to compromised arterial blood flow

- **Location**
 - Usually lower extremities, often shin, feet or toes

- **Ulcer Appearance**
 - Punched out, dry appearing
 - Little drainage unless infected
 - Yellow slough or exudate, maybe eschar
 - Wet or dry gangrene
Arterial Ulcers

- **Skin exam**
 - Nonpalpable or diminished DP and PT pulses
 - Cool skin, loss of hair on toes
 - Periwound skin is “blue”, taut, shiny or show reactive hyperemia
 - Legs may be skinny, nails dystrophic
 - “Monophasic” pulse sounds by hand held doppler

- **Symptoms**
 - Rest pain or night pain
 - Claudication, dependency improves

- **Medical History**
 - Multiple comorbidities: DM2, CAD, CVA
 - “ABCDEs”: A1C, BP, Cholesterol, Diet/Obesity, Exercise, Smoking
Arterial ulcers

- **Diagnosis**
 - Arterial evaluation
 - ABI studies
 - Arterial dopplers
 - MRA
 - Vascular referral

- **Treatment**
 - Vascular evaluation and intervention imperative
 - Conservative approach until intervention
 - After intervention: debridement, moisture balance, skin substitutes
Diabetic Foot Ulcers
Diabetic Foot Ulcers

- **Etiology**
 - Diabetic neuropathy and its sequelae
 - Arterial and “small vessel” disease
 - Pressure
 - Deformity/Charcot foot

- **Location**
 - By definition, anywhere on dorsal or plantar aspect of foot

- **Ulcer Appearance**
 - Often full thickness, may probe to bone or tendon
 - Sometimes communicate from surface to surface
 - Drainage can be heavy
 - Initial appearance is often necrotic
 - If on plantar aspect, callus is very common
Diabetic Foot Ulcers

- **Skin exam**
 - Neuropathy
 - Concurrent arterial disease common
 - Rubor
 - Eczematous

- **Symptoms**
 - Neuropathy makes wound insensate

- **Medical History**
 - DM2, PAD, HTN, hyperlipidemia are common
Diabetic Foot Ulcers

- **Diagnosis**
 - Clinical history

- **Treatment**
 - Arterial assessment (pulses, ABIs with TBIs)
 - Topical agents (eg. PDGF)
 - DM2 control
 - Offloading
 - Serial debridements
 - Appropriate dressings
 - Hyperbaric oxygen
Pressure Ulcers
Pressure Ulcers

- **Etiology**
 - Localized ischemia from prolonged pressure over a bony prominence
 - Damage at superficial and deeper layers

- **Location**
 - Mid body: Sacrum, buttocks, coccyx, ischium
 - Foot: Heel, lateral and medial ankles, toes
 - Upper body: Elbows, scapula, shoulder
 - Head: Occiput, ears

- **Ulcer Appearance**
 - Staged from I to IV according to NPUAP
 - I – Intact skin with non blanching redness
 - II – Partial thickness wound or blister, red wound bed
 - III – Full thickness with slough, no bone/muscle/tendon
 - IV – Full thickness with exposed bone, muscle or tendon
 - Unstageable – full thickness tissue loss with base covered by eschar/slough
Pressure Ulcers

- **Skin exam**
 - Poor turgor, inelastic
 - May be wet from incontinence
 - Localized skin dermatoses

- **Symptoms**
 - Painless to painful

- **Medical History**
 - Neurological injury, neuropathy
 - Cachexia, malnutrition
 - Immobility
Pressure Ulcers

- **Diagnosis**
 - Clinical

- **Treatment**
 - Offloading!
 - Severity of ulcer will dictate offloading surface
 - Offloading devices and practices need to be routinely evaluated
 - Minimize moisture, friction, shearing forces
 - Nutritional assessment and intervention
 - Local wound care including serial debridements
 - Reconstructive surgery in severe cases
 - Prevention and Braden Scale
 - Recommend familiarizing oneself with the Braden scale for predicting pressure ulcer risk
Hyperbaric Oxygen
Hyperbaric Oxygen

- Treatment where patient breathes 100% oxygen at pressure greater than atmospheric.
- Oxygen dissolves into plasma and generates very high oxygen partial pressure gradients:
 - Up to 2000 mm Hg, or 20 times PO2 from room air.
- Multiple different mechanisms through which hyperbaric oxygen effective:
 - Significantly increases activity of fibroblasts and neutrophils.
 - Drives angiogenesis.
 - Reduces local edema.
 - Reduces reperfusion injury.
- Wounds/injury must be ischemic for therapy to be effective:
 - Arterial disease, edematous conditions, infectious, radiation injury.
- Be aware of unusual symptoms with radiation history:
 - Pelvic pain, discharge, hematuria, hematochezia.
Indications for HBO

- Acutely compromised or failed skin flap or graft
- Preparation for skin graft
- Severe diabetic foot ulcers
- Osteo and soft tissue radionecrosis
- Chronic Refractory Osteomyelitis
- Clostridial Myonecrosis (Gas Gangrene)
- Crush injury, Compartment syndrome
- Acute arterial insufficiency
- Necrotizing Fasciitis
- Carbon monoxide poisoning
- Decompression illness
- Arterial Gas embolism
- Brain abscess
- Thermal Burns
- Exceptional Blood Loss Anemia
Atypical Ulcers
Atypical Ulcers

- Pyoderma Gangrenosum
- Livedoid Vasculopathy
- Bullous Pemphigoid
- Porphyria
- Necrobiosis Lipoidica Diabeticorum
- Leukocytoclastic Vasculitis
- Mycobacterium marinum ulcer
- Atrophie Blanche
- Malignant melanoma
- Basal cell carcinoma
- Squamous cell carcinoma
- Mycosis fungoides
- Scleroderma
- Antiphospholipid syndrome
- Factitious dermatitis

• Biopsies are often needed to make the diagnosis
Dressings and Wound Care
Advanced Wound Dressings

- 4 Basic Functions of Advanced Wound dressings
 - Protect the wound from contamination or infection
 - Promote wound cleansing and debridement of unhealthy tissues
 - Absorb excess tissue fluid and wound exudates/debris
 - Maintain a moist environment for healing
- Hydrating - hydrogels
- Absorptive – foams, alginates
- Collagen
- Antimicrobial
- Skin Substitutes
 - Extracellular matrix products
 - Living cell therapy products
 - Growth factors and living keratinocytes
How do I start to workup the chronic wound?

- Do a good wound assessment
 - Size, appearance, drainage, pain
 - Choose a dressing to address immediate needs of wound
- Assess the patient’s vascular status
 - Palpable pulses, Arterial studies
 - Venous studies (order “reflux” evaluation)
 - Edema control (be cautious if arterial compromise)
- Surgical (vascular or plastics) referral
- Based on history and appearance, classify the wound type
How do I start to workup the chronic wound?

- Evaluate for presence of infection
 - Avoid swab cultures or antibiotics if not needed
 - Imaging studies
- If needed, determine patient’s offloading requirements
 - Appliances and surfaces
 - Assess risk for ulcer development and healing
- Examine the patient’s host factors
 - Nutrition, comorbidities, social history, medications
 - Anemia, renal insufficiency, liver dysfunction
 - Discuss likelihood of wound healing with your patient
How do I start to workup the chronic wound?

- Wound Center referral
- When patient comes back to you
 - Explain conditions that may result in wounds or delay wound healing (e.g., edema)
 - Educate on therapy to reinforce compliance with recommendations
 - Routinely discuss skin care and ulcer prevention
Summary

- Wound Care and Hyperbaric Medicine has really become its own subspecialty
- Wounds can be a result of multifactorial etiologies
- Most chronic wounds fall into 6 categories but atypical wounds should always be in the differential
- Multidisciplinary approach is often needed to treat the chronic or complex wound/limb salvage
- Primary care providers can initiate a good workup
- Patient education can help tremendously to heal and keep healed