Important Articles in Internal Medicine

Stephanie Martin, MD
Disclosure of Financial Relationships

- No relationships to disclose
7 Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial

Clinical Infectious Diseases 2018, Volume 69, Issue 7, 1 October 2019, Pages 1091-1098
7 vs 14 Days of Antibiotics for GNR bacteremia

- Randomized, multicenter, open-label non-inferiority trial for inpatients with gram-negative bacteremia
- Included people with UTI, intra-abdominal, respiratory tract, central venous catheter, or skin/soft tissue infection, or unknown source of bacteremia
- Excluded patient with uncontrolled focus of infection, polymicrobial infections, immunosuppression, or specific pathogens (Brucella, Salmonella)
- Patients were randomized at day 7 of covering antibiotic therapy to receive either 7 or 14 days of treatment
7 vs 14 Days of Antibiotics for GNR bacteremia

- Outcomes measured
 - Mortality
 - Clinical failure
 - Relapse
 - Local suppurative complications or distant complications
 - Readmission
 - Extended hospital stay (>14 days)
7 vs 14 Days of Antibiotics for GNR bacteremia

Patients with Gram-negative bacteremia screened for the trial (n=4807)

- Non-eligible
 - Specific pathogen excluded (n=55)
 - Polymicrobial growth (n=557)
 - Immunosuppression (n=365)
 - Repeated positive blood cultures (n=96)
 - Hemodynamic instability or fever 48 h prior to randomization day (n=653)
 - Uncontrolled focus of infection (n=912)

Assessed for eligibility (n=2169)

- Excluded (n=1565)
 - Previous enrollment in this trial (n=13)
 - Participation in another clinical trial (n=169)
 - Special population (n=53)
 - Patient/guardian refusal (n=370)
 - Unable to provide informed consent (n=810)
 - Treating physician unwillingness (n=150)

604 patients were enrolled and underwent randomization

- Allocated to intervention (n=306)
 - Received allocated 7 days (n=280)
 - Did not receive 7 days (n=26)
 - Treatment prolonged (n=26)

- Allocated to control (n=298)
 - Received 14 days (n=276)
 - Did not receive 14 days (n=22)
 - Treatment prolonged (n=9)
 - Treatment shortened (n=13)

Lost to follow-up (n=0)

Discontinued intervention (n=0)

Analysed (n=280)
 - Excluded from per protocol analysis (n=26)

Analysed (n=276)
 - Excluded from per protocol analysis (n=22)
7 vs 14 Days of Antibiotics for GNR bacteremia

Table 2. Outcomes of 7 Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-Negative Bacteremia

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Short Arm (7 d) (n = 306)</th>
<th>Long Arm (14 d) (n = 298)</th>
<th>Risk Difference (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>140 (46.8)</td>
<td>144 (48.3)</td>
<td>-2.6 (-10.5 to 5.3)</td>
<td>.527</td>
</tr>
<tr>
<td>90-d all-cause mortality</td>
<td>36 (11.8)</td>
<td>32 (10.7)</td>
<td>1.0 (-4.0 to 6.1)</td>
<td>.702</td>
</tr>
<tr>
<td>Readmissions</td>
<td>119 (38.9)</td>
<td>127 (42.6)</td>
<td>-3.7 (-11.5 to 4.1)</td>
<td>.363</td>
</tr>
<tr>
<td>Extended hospitalization beyond 14 d</td>
<td>15 (4.9)</td>
<td>19 (6.4)</td>
<td>-1.5 (-5.1 to 2.2)</td>
<td>.483</td>
</tr>
<tr>
<td>Distant complications</td>
<td>2 (0.7)</td>
<td>1 (0.3)</td>
<td>...</td>
<td>1.0</td>
</tr>
<tr>
<td>Relapse of bacteremia</td>
<td>8 (2.6)</td>
<td>8 (2.7)</td>
<td>-0.07 (-2.6 to 2.5)</td>
<td>.957</td>
</tr>
<tr>
<td>Suppurative complications</td>
<td>16 (5.2)</td>
<td>10 (3.4)</td>
<td>1.8 (-1.4 to 5.1)</td>
<td>.257</td>
</tr>
<tr>
<td>14-d mortality</td>
<td>7 (2.3)</td>
<td>4 (1.3)</td>
<td>0.96 (-1.42 to 3.44)</td>
<td>.288</td>
</tr>
<tr>
<td>28-d mortality</td>
<td>15 (4.9)</td>
<td>10 (3.4)</td>
<td>1.54 (-2.98 to 4.06)</td>
<td>.753</td>
</tr>
<tr>
<td>New clinically or microbiologically documented infection</td>
<td>70 (22.9)</td>
<td>68 (22.8)</td>
<td>0.06 (-6.6 to 6.8)</td>
<td>.987</td>
</tr>
<tr>
<td>Functional capacity: needs assistance/dependent in ADL or bedridden at 30 d</td>
<td>150 (51.4) (n = 292)</td>
<td>163 (52.7) (n = 285)</td>
<td>-5.8 (-13.9 to 2.3)</td>
<td>.031</td>
</tr>
<tr>
<td>Resistance development</td>
<td>33 (10.8)</td>
<td>29 (9.7)</td>
<td>1.0 (-3.7 to 5.9)</td>
<td>.690</td>
</tr>
<tr>
<td>Time to return to baseline activity, wk (90 d)</td>
<td>2 (0-8.3) (n = 218)</td>
<td>3 (1-12) (n = 222)</td>
<td>...</td>
<td><.010</td>
</tr>
<tr>
<td>Total hospital days (90 d from randomization)—survivors</td>
<td>3 (1-9) (n = 270 alive at day 90)</td>
<td>3.5 (1-10) (n = 266 alive at day 90)</td>
<td>...</td>
<td>.923</td>
</tr>
<tr>
<td>Total hospital days (90 d from randomization)—all</td>
<td>4 (1-10)</td>
<td>4 (1-12)</td>
<td>...</td>
<td>.603</td>
</tr>
<tr>
<td>Duration of appropriate antibiotic therapy for bacteremia</td>
<td>7 (70-8.0)</td>
<td>14.0 (14.0-14.0)</td>
<td>...</td>
<td><.001</td>
</tr>
<tr>
<td>Total antibiotic days from culture collection to day 90</td>
<td>10.0 (9.0-18.0)</td>
<td>16.0 (15.0-22.0)</td>
<td>...</td>
<td><.001</td>
</tr>
<tr>
<td>postrandomization</td>
<td>(n = 270 alive at day 90)</td>
<td>(n = 266 alive at day 90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute kidney injury</td>
<td>14 (4.6)</td>
<td>12 (4.0)</td>
<td>0.5 (-2.7 to 3.8)</td>
<td>.842</td>
</tr>
<tr>
<td>Liver function abnormalities</td>
<td>16 (5.2)</td>
<td>20 (6.7)</td>
<td>-1.5 (-5.3 to 2.3)</td>
<td>.494</td>
</tr>
<tr>
<td>Diarrhea during hospital stay</td>
<td>17 (5.6)</td>
<td>23 (7.7)</td>
<td>-2.2 (-6.1 to 1.8)</td>
<td>.285</td>
</tr>
<tr>
<td>Diarrhea until day 90</td>
<td>49 (16)</td>
<td>54 (18.1)</td>
<td>-2.1 (-8.1 to 3.9)</td>
<td>.491</td>
</tr>
<tr>
<td>Rash</td>
<td>2 (0.7)</td>
<td>4 (1.4)</td>
<td>...</td>
<td>.445</td>
</tr>
<tr>
<td>Clostridium difficile infection</td>
<td>3 (1.0)</td>
<td>1 (0.3)</td>
<td>...</td>
<td>.322</td>
</tr>
</tbody>
</table>

Data are presented as no. (%) unless otherwise indicated. Values in bold indicate statistically significant difference.

Abbreviations: ADL, activities of daily living; CI, confidence interval.

aDiarrhea is defined as ≥3 episodes per day for at least 2 days.
7 vs 14 Days of Antibiotics for GNR bacteremia

- Study showed 7 days of antibiotic therapy to be non-inferior to 14 days in terms of mortality, clinical failure, readmissions, and prolonged hospitalization.
- Rates of superinfections, development of resistance, and adverse events were not significantly different between the two groups.
- A more rapid return to baseline activity was documented for the short-duration antibiotic arm (2 vs 3 days).
Limitations

- Included mostly Enterobacteriaceae as offending pathogens (~90%) which limits applicability for other bacteria including Pseudomonas and Acinetobacter
- Could not show the impact of reducing antibiotic use on resistance

Conclusion

- 7 days was non-inferior to 14 days for GNR bacteremia
Prevalence of Pulmonary Embolism in Patients with Syncope

Journal of the American College of Cardiology, Vol 74, NO.6, August 13, 2019: 744-754
Prevalence of PE in Syncope

- Syncope is very common – and establishing the etiology is challenging. PE needs to be included in the differential diagnosis.
 - A study published in the New England Journal in 2016 suggested that 1 in 6 patients presenting with syncope has underlying PE (PESIT trial).
 - Another study published in the Archives of Internal Medicine suggested PE is over diagnosed.
Prevalence of PE in Syncope

- BASEL IX study (BAasel Syncope EvaLuation Study) is a multicenter study in 13 countries including the US
- Patients over the age of 40, able to sign consent, presenting with syncope were recruited.
- Patients were excluded if they were already on anticoagulation
- All patients underwent a clinical assessment, vitals, lab testing including D-dimer, ECG.
- Additional testing including tilt table testing, echo, 24 hour ECG, implantable loop device were performed based on clinician decision
Prevalence of PE in Syncope

- Patients were evaluated for PE based on the following:
 - Measurement of D-dimer with age adapted cutoffs
 - This lab was drawn in a blinded fashion and all results were sent to a dedicated core laboratory
 - Wells score
 - Patients with Wells score less than or equal to 4 were considered unlikely for PE, greater than 4 were considered likely for PE
Prevalence of PE in Syncope

Testing for PE (CTA-PE or V/Q scan) was performed in patients with high pre-test probability using Well’s criteria or elevated D-dimers

- Imaging criteria for PE were an intraluminal filling defect on CTPA or perfusion defect of at least 75% of a segment with corresponding normal ventilation on V/Q scan. Each scan was ready by a certified radiologist.

Follow up

- Patients were contacted 12 and 24 months after discharge to determine the prevalence of PE during follow up.
- Researchers also looked for re-hospitalizations, outpatient treatments, and national death registries.

Outcomes

- Prevalence of PE at presentation
- Development of new PE and cardiovascular death during 2-year follow up.
Prevalence of PE in Syncope - Results

Figure 1
Prevalence of PE in Syncope - Results

- Subgroup of hospitalized patients
 - Overall prevalence of PE was 2.3%, at 2 year follow up new incidence of PE and cardiovascular death was 0.9%
 - In hospitalized patients with 1st syncopal event – incidence of new PE was 4.3% and at 2 year follow up incidence of new PE and cardiovascular death was 0.8%
Prevalence of PE in Syncope

Limitations

- Only patients stable enough to sign consent could be enrolled so patients who were hemodynamically unstable or with respiratory compromise weren’t included
- Median age was 69 (younger than 80 which was the median age for PESIT trial)

Conclusions

- It’s reasonable to suggest PE workup should be tailored to patients in whom additional signs/symptoms such as dyspnea, signs of DVT, or signs on ECG at presentation (like RBBB) suggest PE as underlying cause

Patterns of Opioid Administration Among Opioid-Naïve Inpatients and Associations with Post-discharge Opioid Use

Annals of Internal Medicine, Volume 171, No. 2, 16 July 2019: 81-92
Patterns of Opioid Administration

- Retrospective cohort study using HER data from UPMC Health System and University of Pittsburgh

- Inclusion criteria
 - Adults admitted to study hospitals who were opioid naïve (no documented opioid use in the inpatient and outpatient encounter databases in 12 months)

- Exclusion criteria
 - Admissions that were for deliveries
 - Admissions occurring <90 days from prior admit (only the first admission was included)
 - Those missing data (incomplete inpatient med records or those without outpatient encounter within 12 months before and after the admission)
 - Patients who had opioid use in the 12 months prior to the admission (not naïve)
Patterns of Opioid Administration

- 3 outcomes were measured
 - Number of days on which any opioid was administered during the hospital stay, excluding post-op use (within 24 hours of surgery)
 - Information collected included timing of last opioid administration relative to discharge (in hours), location of first use (ER, ICU, ward), and use of non-opioid analgesics (NSAIDS or acetaminophen)
 - Opioid use at 90 days after discharge
 - Opioid use at 365 days after discharge
 - This data was self-reported use as they could not observe prescription fills in pharmacy using the outpatient database
Patterns of Opioid Administration

Results

- Generally, inpatients receiving opioids were more likely to be younger, female, and to have Medicaid or commercial insurance. They were also twice as likely to have been admitted for a surgical procedure. Comorbid musculoskeletal pain conditions were more common in stays with opioid use.

- Patients who received opioids received them for 67.9% of days.

- Non-opioid analgesics were rarely used before opioids.

- Receipt of opioids in the hospital was associated with a roughly 2-fold higher relative risk for outpatient use within 90 days (5.9% to 3.0%). Results were similar at 365 days.
Patterns of Opioid Administration

- Patterns associated with increased likelihood of outpatient use
 - Those given opioids for a higher percentage of stay
 - Those receiving opioids for 76-100% of their stay vs those receiving them for 1-25% of their stay were at higher risk for using opioids after discharge (RRR 1.25 – CI 1.09-1.43)
 - Those who received opioids during the last 12 hours of their hospital stay
 - Patients who received an opioid during the last 12 hours of their stay compared with those who did not receive an opioid for the last 24 hours of their stay had twice the risk for opioid use 90 days after discharge (RRR 2.02 – CI 1.83-2.23)
 - Those who received their first opioid in the emergency department (RRR 1.13 – CI 1.04-1.22)
The authors presented 4 key findings:

- Nearly half of opioid-naïve patients were given opioids in the hospital:
 - They noted most of these patients received them before non-opioid analgesics.

- Any receipt of an opioid in the hospital was associated with roughly twice the probability of outpatient use after discharge.

- A large percentage of inpatients who received opioids received them for most of their stay and patients were frequently administered opioids within 12 hours of discharge.

- Patterns related to timing and duration of inpatient opioid administration were independently associated with increased probability of outpatient use up to 1 year after discharge.
Patterns of Opioid Administration

Limitations

- Single health system
- Observational study, at risk for confounders like history of substance use disorder, pain severity
- Only looked back 12 months for opioid use – may have misclassified some patients as opioid naïve
- No measurement of appropriateness of opioid use
- Only looked at outpatient use recorded in outpatient records – didn’t look at pharmacy fills or patients who received opioids illegally
Patterns of Opioid Administration

- Take away – receipt of any opioid in the hospital was associated with nearly twice the probability of continued outpatient use in opioid naïve patients

Antipsychotics for Treating Delirium in Hospitalized Adults

Ann Intern Med. 3 September 2019 doi: 10.7326/M19-1860
Antipsychotics for Delirium

- Systematic review of randomized controlled trials and prospective observational studies to evaluate the benefits and harms of haloperidol and second-generation antipsychotics compared with placebo
- Study included 16 RCT and 10 observational studies
- Outcomes measured
 - Cognitive functioning
 - Hospital length of stay
 - Delirium severity
 - Sedation
 - Inappropriate continuation of antipsychotics
 - Safety (cardiac and neurologic as well as mortality)
Antipsychotics for Delirium

- **Inclusion criteria**
 - Studies that compared an antipsychotic with placebo or with another antipsychotic
 - Studies that evaluated outcomes relevant to the review
 - Observational studies with comparison groups that reported adverse events

- **Exclusion**
 - Studies without a validated instrument to diagnose delirium
Antipsychotics for Delirium - Results

- **Effect on Cognitive Functioning**
 - 3 studies reported on this, all with second-generation antipsychotics (olanzapine, risperidone, quetiapine) vs haloperidol
 - No difference in effect was reported

- **Effect on Delirium severity**
 - 12 studies reported on this using various instruments to document severity
 - Haloperidol vs placebo – inconsistent findings
 - Second-generation vs placebo – inconsistent findings
 - Second-generation vs haloperidol – no difference in severity
Antipsychotics for Delirium – Results Cont

- Hospital length of stay
 - 4 studies evaluated this outcome
 - Haloperidol vs placebo – no difference in outcome
 - Second-generation vs placebo – no significant difference in outcome
 - Second-generation vs haloperidol – no difference in outcome

- Inappropriate continuation of antipsychotics
 - No studies were found
Antipsychotics for Delirium – Results Cont

- **Sedation**
 - 11 studies evaluated this
 - Haloperidol vs placebo – no statistically significant difference in sedation related outcomes
 - Second-generation vs placebo – no effect on onset of sedation
 - Second-generation vs haloperidol – no difference in sedation related outcomes

- **Delirium duration**
 - 9 studies evaluated this
 - Haloperidol vs placebo – no effect on duration
 - Second-generation vs placebo – no effect on duration
 - Second-generation vs haloperidol – slightly longer delirium duration for second-generation antipsychotics
Antipsychotics for Delirium – Results Cont

- **Mortality**
 - 8 studies evaluated this, 1 other study evaluated palliative care patients
 - Haloperidol vs placebo – no effect. The study that evaluated palliative care patients reported a decreased survival for haloperidol
 - Second-generation vs placebo – no effect. The palliative care study reported a non-statistically significant decrease in survival for risperidone
 - Second-generation vs haloperidol – no effect on mortality
Antipsychotics for Delirium – Results Cont

- **Cardiac effects**
 - 10 studies
 - Haloperidol vs placebo – no difference in QT prolongation
 - Second-generation vs placebo – increased QT prolongation (RR 1.57 – CI 0.9-2.76)
 - Second-generation vs haloperidol – potentially important increase in QT prolongation and temporary increase in drug due to QT prolongation

- **Neurologic effects (Extrapyramidal symptoms – EPS)**
 - 22 studies
 - Haloperidol vs placebo – no increase in EPS
 - Second-generation vs placebo – no increase in EPS
 - Haloperidol vs second-generation – lower incidence of EPS in second-generation antipsychotics
 - No studies resulted in neuroleptic malignant syndrome
Antipsychotics for Delirium

Discussion

- No differences for haloperidol or second-generation antipsychotics, compared with placebo, in hospital length of stay, sedation, delirium duration, or mortality and insufficient evidence for the effect on cognitive function and delirium severity
- Potentially harmful cardiac effects tended to occur more frequently in second-generation antipsychotics
- The included studies did not evaluate the effect of antipsychotics on patient distress in-hospital or patient functioning after hospital discharge
- Limitations – studies excluded patients with underlying cardiac or neurologic issues and were heterogeneous.
Antipsychotics for Delirium

- Bottom line – study authors don’t recommend routine use of antipsychotics for treating delirium. But they also don’t offer any alternatives

Questions??