Update on Anticoagulants

Jay Gaddy, MD, PhD
Indiana Hemophilia & Thrombosis Center
Indianapolis, Indiana

Disclosures

• None

Overview

• General discussion of anticoagulants
• New oral anticoagulants (NOACs) and their targets
• Oral direct thrombin inhibitor - Dabigatran
• Oral factor Xa Inhibitors – Rivaroxaban, Apixaban
• Reversal of anticoagulants

The ‘Ideal’ Oral Anticoagulant

• Good bioavailability
• No food or drug interactions
• Rapid onset of action
• Wide therapeutic window
• Predictable anticoagulant response
• Available antidote
• No unexpected toxicities
• Reasonable cost
• Mechanism to ensure compliance with therapy

Warfarin

• When warfarin therapy is started, its anticoagulant effects may not be apparent for several days.
• The duration of action of a single dose is 2–5 days.
• The therapeutic effect of warfarin exists within a narrow therapeutic window as dictated by the INR.
• Considerable inter- and intra-individual dose variability may be affected by a wide range of physiologic (liver and thyroid function), genetic, and environmental (eg, diet, other drugs) factors.
• Regular monitoring is required to avoid excessive or insufficient anticoagulation.

Warfarin’s Therapeutic Window in A-fib

• Ischaemic stroke
• Intracranial bleeding

International normalized ratio
Cumulative Incidence Rates of Bleeding in VTE Patients on Anticoagulation in the ‘Real World’

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Patients With VTE (With or Without DVT)</th>
<th>Patients With VTE (Without DVT)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major bleeding</td>
<td>9.6</td>
<td>9.5</td>
<td>.56</td>
</tr>
<tr>
<td>Retrosent VTE (DVT or PE)</td>
<td>3.3</td>
<td>4.6</td>
<td>.14</td>
</tr>
<tr>
<td>Malignant tumor</td>
<td>1.1</td>
<td>1.1</td>
<td>.36</td>
</tr>
<tr>
<td>Stroke</td>
<td>15.0</td>
<td>8.9</td>
<td>.01</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>17.6</td>
<td>10.0</td>
<td>.01</td>
</tr>
</tbody>
</table>

Limitations of Warfarin Therapy

<table>
<thead>
<tr>
<th>Limitations</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow onset of actions</td>
<td>Overlap with parenteral anticoagulant</td>
</tr>
<tr>
<td>Genetic variation in metabolism</td>
<td>Variable dose requirement</td>
</tr>
<tr>
<td>Multiple food & drug interactions</td>
<td>Frequent INR monitoring</td>
</tr>
<tr>
<td>Narrow therapeutic index</td>
<td>Frequent INR monitoring</td>
</tr>
</tbody>
</table>

Most Common Currently Available Anticoagulants

<table>
<thead>
<tr>
<th>Sub-class</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombin inhibitors</td>
<td>UFH, Bivalirudin, Lepirudin**, Argatroban, Dabigatran</td>
</tr>
<tr>
<td>Xa-inhibitor</td>
<td>UFH, LMWH, Fondaparinux, Rivaroxaban, Apixaban (Edoxaban)</td>
</tr>
<tr>
<td>Vit K antagonists</td>
<td>Warfarin</td>
</tr>
</tbody>
</table>

Generic and Brand Names

- Dabigatran – Pradaxa®
- Rivaroxaban – Xarelto®
- Apixaban – Eliquis®

Use of Newer Oral Anticoagulants

- Advantages:
 - Fixed oral dosing
 - No need to monitor anticoagulant effect with labs
 - Fewer drug interactions (but there still are some!)
 - No dietary restrictions

- Disadvantages:
 - Lack of validated tests of anticoagulant effect
 - No clinically proven antidotes
 - More difficult to assess patient compliance
 - Lack of data on long-term adverse events
 - Absence of head-to-head comparisons between novel oral anticoagulants
Targeting Specific Coagulation Factors

- Newer oral anticoagulants target specific points in the coagulation cascade:
 - Factor Xa inhibitors (e.g., rivaroxaban, apixaban) target factor Xa, preventing the conversion of prothrombin to thrombin.
 - Direct thrombin inhibitors (e.g., dabigatran, ximelagatran) target thrombin (factor IIa), blocking the conversion of fibrinogen to fibrin.
- The goal of novel oral anticoagulants is to offer more specific targeting and to afford more predictable responses than current anticoagulant therapies offer.

Targets of New Oral Anticoagulants

Comparison of New Oral Agents

<table>
<thead>
<tr>
<th>Feature</th>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Thrombin</td>
<td>Factor Xa</td>
<td>Factor Xa</td>
</tr>
<tr>
<td>Prodrug</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dosing</td>
<td>Fixed, 2x daily</td>
<td>Fixed, once daily</td>
<td>Fixed, twice daily</td>
</tr>
<tr>
<td>Bioavailability (%)</td>
<td>6</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Time to onset (hrs)</td>
<td>2</td>
<td>2-4</td>
<td>1-3</td>
</tr>
<tr>
<td>Coagulation monitoring</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Half-life (hr)</td>
<td>12-17</td>
<td>9-13</td>
<td>9-15</td>
</tr>
<tr>
<td>Renal clearance (%)</td>
<td>80</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>Interactions</td>
<td>P-gp inhibitors*</td>
<td>Combined P-gp and CYP3A4 inhibitors</td>
<td>Combined P-gp and CYP3A4 inhibitors*</td>
</tr>
<tr>
<td>US approved indications</td>
<td>A-Ib</td>
<td>VTE prevention and treatment, A-Ib</td>
<td>A-Ib</td>
</tr>
</tbody>
</table>

Phase III Randomized Controlled Trials for VTE Prevention

<table>
<thead>
<tr>
<th>Drug</th>
<th>Hip Arthroplasty</th>
<th>Knee Arthroplasty</th>
<th>Medical</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>RE-NOVATE II</td>
<td>RE-MODEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RE-NOVATE III</td>
<td>RE-MOBILIZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>RECORD3</td>
<td>RECORD4</td>
<td>MAGELLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECORD2</td>
<td>RECORD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apixaban</td>
<td>ADVANCE2</td>
<td>ADVANCE1</td>
<td>ADAPT</td>
<td></td>
</tr>
</tbody>
</table>

Phase III Randomized Controlled Trials non-VTE prophylaxis

<table>
<thead>
<tr>
<th>Anticoagulant</th>
<th>VTE Treatment</th>
<th>ACS</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idarabigatran</td>
<td>CASIOPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dabigatran</td>
<td>RE-COVER I</td>
<td>RE-LY</td>
<td>RE-LY</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>EINSTEIN DVT</td>
<td>ATLAS</td>
<td>Japanese AF</td>
</tr>
<tr>
<td>Apixaban</td>
<td>APRAISE2</td>
<td>AVERROES</td>
<td></td>
</tr>
<tr>
<td>Edoxaban</td>
<td>Hokusei-DVT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Eikelboom et al. Circulation 2010 (121(1))
FDA Approvals

- **Dabigatran**
 - CVA and systemic embolism prevention in non-valvular A-fib
- **Rivaroxaban**
 - CVA and systemic embolism prevention in non-valvular A-fib
 - VTE prevention in TKR and THR
 - Treatment of VTE/PE
- **Apixaban**
 - CVA and systemic embolism prevention in non-valvular A-fib

Dabigatran etexilate

- Oral prodrug, converted to Dabigatran
- Binds clot-bound and free thrombin with high affinity and specificity
- Bioavailability: 6.5%
- Renal excretion: 80%
- Half-life: 12–17 hours
- No interaction with food

Dabigatran etexilate

- No participation with CYP450
- Predictable anticoagulant effect – no need for monitoring
- No liver toxicity based on available clinical data
- Dyspepsia is a side effect
- PPIs and H2 blockers may affect absorption
- Potential medication interactions with P-gp affecting drugs – Amiodarone, Dronedarone, Quinidine, Verapamil, Ketoconazole, Rifampin, St Johns Wort

Dabigatran

- Other considerations
 - Hygroscopic
 - Capsules should not be removed from original container except for immediate use
 - Capsules only approved for 60 days after opening bottle
 - Capsule should not be placed in pill boxes
 - Cannot crush or open pills for use in feeding tubes

Dabigatran: FDA Approval

- **RE-LY (stroke prevention in patients with A-fib)**
 - 18,113 patients
 - Dabigatran 110 and 150 mg bid compared with warfarin
 - Treatment duration up to 3 years, median follow-up of 2 yrs
 - 110 mg associated with rates of stroke or systemic embolism that were similar to those associated with warfarin, as well as lower rates of major hemorrhage
 - Dabigatran administered at a dose of 150 mg, as compared with warfarin, was associated with lower rates of stroke or systemic embolism but similar rates of major hemorrhage

RE-LY: Major Bleeding & ICH

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran 110 mg</th>
<th>Warfarin</th>
<th>Dabigatran 110 mg vs warfarin</th>
<th>Dabigatran 150 mg vs warfarin</th>
<th>Dabigatran 150 mg vs 110 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate/year</td>
<td>Rate/year</td>
<td>RR (95% CI)</td>
<td>P</td>
<td>RR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>3.0%</td>
<td>1.9%</td>
<td>0.80 (0.69-0.93)</td>
<td>.003</td>
<td>0.80 (0.69-0.93)</td>
</tr>
<tr>
<td>All ICH</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.31 (0.20-0.47)</td>
<td>< .001</td>
<td>0.46 (0.34-0.64)</td>
</tr>
</tbody>
</table>

RE-LY: Sites of Major Bleeding

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran 110mg vs Warfarin</th>
<th>Dabigatran 150mg vs Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial</td>
<td>0.23%</td>
<td>0.30%</td>
</tr>
<tr>
<td>Major Bleed</td>
<td>2.71%</td>
<td>3.11%</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>1.12%</td>
<td>1.51%</td>
</tr>
</tbody>
</table>

Annual rate (95% CI)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial</td>
<td>0.31 (0.20-0.47)</td>
<td>0.40 (0.27-0.60)</td>
</tr>
<tr>
<td>Major Bleed</td>
<td>0.80 (0.69-0.93)</td>
<td>0.93 (0.83-1.07)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>1.10 (0.86-1.41)</td>
<td>1.50 (1.19-1.89)</td>
</tr>
</tbody>
</table>

RE-LY: GI Major Bleeding & MI

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran 110 mg vs Warfarin</th>
<th>Dabigatran 150 mg vs Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate/Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial</td>
<td>1.1%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Major GI</td>
<td>0.72%</td>
<td>0.74%</td>
</tr>
</tbody>
</table>

Rate/Year (95% CI)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial</td>
<td>1.10 (0.86-1.41)</td>
<td>1.50 (1.19-1.89)</td>
</tr>
<tr>
<td>Major GI</td>
<td>0.72 (0.58-0.87)</td>
<td>1.36 (1.02-1.80)</td>
</tr>
</tbody>
</table>

RE-LY: Drug Discontinuation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dabigatran 110 mg (n = 6015)</th>
<th>Dabigatran 150 mg (n = 6076)</th>
<th>Warfarin (n = 6022)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinued at 1 year, %</td>
<td>15%</td>
<td>16%</td>
<td>10%</td>
<td><.001</td>
</tr>
<tr>
<td>Discontinued at 2 years, %</td>
<td>21%</td>
<td>21%</td>
<td>17%</td>
<td><.001</td>
</tr>
</tbody>
</table>

* Rates of discontinuation at 1 and 2 years were higher with dabigatran than warfarin (P < .001). Rates are based on Kaplan-Meier estimates.

Dabigatran: Dosing in US

- **CrCl > 30 – 150mg bid**
- **CrCl 15-30 – 75mg bid**
- **CrCl < 15 – not recommended**

- **CrCl should be assessed yearly in patients > 75**

Rivaroxaban

- Predictable pharmacology
- High bioavailability
- Fixed dose
- No requirement for monitoring
- Inhibits free and thrombus associated Xa
- Contraindicated in severe renal insufficiency
- Drug interactions with meds that affect P-gp and CYP3A4 – Candesartan, Rifampin, Clarithromycin, St Johns Wort and HIV-protease inhibitors (ritonavir)

Rivaroxaban

- Specific, competitive, direct FXa inhibitor
- Inhibits free and clot-associated FXa activity, and prothrombinase activity
- Inhibits thrombin generation via inhibition of FXa activity
- Prolongs time to thrombin generation
- Inhibits peak thrombin generation
- Reduces the total amount of thrombin generated
- Does not require a cofactor
Rivaroxaban: FDA Approvals

- VTE prevention following TKR and THR
 - RECORD studies
- Stroke prevention in non-valvular A-fib
 - ROCKET-AF studies
- Treatment of DVT and PE
 - EINSTEIN-DVT and EINSTEIN-PE studies

Phase III RECORD - VTE prevention

- Oral rivaroxaban 10 mg qd compared with subcutaneous enoxaparin

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration of rivaroxaban therapy</th>
<th>Duration of enoxaparin therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD1</td>
<td>THR 5 weeks</td>
<td>5 weeks</td>
</tr>
<tr>
<td>RECORD2</td>
<td>THR 5 weeks</td>
<td>10–14 days, followed by placebo</td>
</tr>
<tr>
<td>RECORD3</td>
<td>TKR 10–14 days</td>
<td>10–14 days</td>
</tr>
<tr>
<td>RECORD4</td>
<td>TKR 10–14 days</td>
<td>10–14 days</td>
</tr>
</tbody>
</table>

RECORD - Efficacy endpoints

Primary
- Total venous thromboembolism (VTE): any deep vein thrombosis (DVT, judged by venography), non-fatal pulmonary embolism (PE), and all-cause mortality

Secondary
- Major VTE: proximal DVT, non-fatal PE, and VTE-related death
- DVT: any, proximal, distal
- Symptomatic VTE

Phase III outcomes in Rivaroxaban VTE prophylaxis

<table>
<thead>
<tr>
<th>Study</th>
<th>Rivaroxaban</th>
<th>Enoxaparin</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD1</td>
<td>(10 mg qd)</td>
<td>(40mg qd or 30mg bid)</td>
<td></td>
</tr>
<tr>
<td>n p/d</td>
<td>n p/d</td>
<td>n p/d</td>
<td></td>
</tr>
<tr>
<td>Total VTE</td>
<td>1.1 (181/1,595)</td>
<td>3.7 (261/1,558)</td>
<td><0.001</td>
</tr>
<tr>
<td>Major VTE</td>
<td>0.2 (41/1,666)</td>
<td>2.0 (231/1,678)</td>
<td><0.001</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>0.3 (63/2,003)</td>
<td>0.1 (22/2,204)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

RECORD - Safety endpoints

Main
- Major bleeding starting after the first blinded dose and ≤2 days after last dose
 - Bleeding that was fatal, into a critical organ or required re-operation
 - Extra-surgical-site bleeding associated with a drop in hemoglobin ≥2 g/dL or requiring transfusion of ≥2 units blood

Other
- Any bleeding on treatment*
- Non-major bleeding*
- Hemorrhagic wound complications*
- Cardiovascular adverse events
- Liver enzyme levels

Conclusions

Rivaroxaban at a dose 10mg po qd shows efficacy and tolerable side effects for VTE prophylaxis
ROCKET AF: Study Design

Primary Endpoint: Stroke or non-CNS Systemic Embolism

- Enrollment of patients without prior Stroke, TIA or systemic embolism and only 2 factors capped at 10%
- Risk Factors, at least 2 of:
 - CHF
 - Hypertension
 - Age ≥ 75
 - Diabetes
 - Stroke, TIA or systemic embolus

Atrial Fibrillation

- Rivaroxaban 20 mg daily (15 mg for Cr Cl 30-49 ml/min)
- Warfarin INR target: 2.5 (2.0 - 3.0 inclusive)

Randomized Double Blind / Double Dummy

(N= 14,264)

Monthly Monitoring

Adherence to standard of care guidelines

Data presented by Mahaffey, KW. AHA Scientific Sessions, Chicago, IL, November 2010

ROCKET AF: Primary Efficacy Outcome

Stoke and non-CNS Embolism

Event Rates are per 100 patient-years. Based on Protocol Compliant on Treatment Population

<table>
<thead>
<tr>
<th>Event Rate</th>
<th>HR (95% CI)</th>
<th>P-value Non-Inferiority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivaroxaban</td>
<td>1.71</td>
<td>0.79 (0.66, 0.96)</td>
</tr>
<tr>
<td>Warfarin</td>
<td>2.16</td>
<td></td>
</tr>
</tbody>
</table>

ROCKET AF: Primary Safety Outcomes

Bleeding:

<table>
<thead>
<tr>
<th>Event Rate or N (Rate)</th>
<th>Rivaroxaban</th>
<th>Warfarin</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major and non-major Clinically Relevant</td>
<td>14.91</td>
<td>14.52</td>
<td>1.03</td>
<td>.442</td>
</tr>
<tr>
<td>Major</td>
<td>3.60</td>
<td>3.45</td>
<td>1.04</td>
<td>.576</td>
</tr>
<tr>
<td>Non-major Clinically Relevant</td>
<td>11.80</td>
<td>11.37</td>
<td>1.04</td>
<td>.345</td>
</tr>
</tbody>
</table>

Event Rates are per 100 patient-years Based on Safety on Treatment Population

ROCKET AF: conclusions

- Rivaroxaban demonstrated non-inferiority to Warfarin for primary efficacy and safety outcomes: HR=0.79 (0.66-0.96), p<0.001; HR=1.03, (0.96-1.11), p=0.442, respectively
Rivaroxaban: EINSTEIN Studies – Phase III Trials

Open label, assessor blind, non-inferiority studies comparing standard VKA anticoagulation to Rivaroxaban for treatment of acute VTE and prevention of recurrent VTE

- **EINSTEIN-DVT** – patients with objectively confirmed proximal DVT
- **EINSTEIN-PE** – patients with objectively confirmed pulmonary embolus
 - Primary efficacy endpoint – Prevention of recurrent symptomatic VTE
 - Primary safety endpoint – Combination of major and non-major clinically relevant bleeding

EINSTEIN PE: study design

Randomized, open-label, event-driven, non-inferiority study

- 88 primary efficacy outcomes needed
- Non-inferiority margin: 2.0
- Predefined treatment period of 3, 6, or 12 months

15 mg bid Rivaroxaban

Day 1

Day 21

Enoxaparin bid for at least 5 days, plus VKA INR 2.5 (range 2.0–3.0)

EINSTEIN PE: primary efficacy

<table>
<thead>
<tr>
<th>Time to symptomatic recurrence of VTE</th>
<th>Rivaroxaban (N=2412)</th>
<th>Enoxaparin/VKA (N=2405)</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent DVT</td>
<td>(8.7)</td>
<td>(10.2)</td>
<td>0.75 (0.63–0.90)</td>
<td>0.015</td>
</tr>
<tr>
<td>Recurrent DVT + PE</td>
<td>(0.2)</td>
<td>(0.3)</td>
<td>0.70 (0.44–1.11)</td>
<td>0.19</td>
</tr>
<tr>
<td>Fatal PE/unexplained death where PE cannot be ruled out</td>
<td>(0.4)</td>
<td>(0.5)</td>
<td>0.75 (0.44–1.28)</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Rivaroxaban superior

p=0.0057 for superiority (one-sided)

Rivaroxaban non-inferior

p=0.0025 for non-inferiority (one-sided)

*Potential relative risk increase 264.4%; absolute risk difference 0.24% (-0.5 to 1.02)

EINSTEIN PE: principal safety outcome – major or non-major clinically relevant bleeding

<table>
<thead>
<tr>
<th>Time to event (days)</th>
<th>Rivaroxaban (N=2412)</th>
<th>Enoxaparin/VKA (N=2405)</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite of primary efficacy outcome and major bleeding</td>
<td>2.9%</td>
<td>8.1%</td>
<td>0.67 (0.54–0.86)</td>
<td>0.0026</td>
</tr>
<tr>
<td>All cause mortality</td>
<td>2.2%</td>
<td>2.9%</td>
<td>0.67 (0.54–0.86)</td>
<td>0.0026</td>
</tr>
<tr>
<td>Cardiovascular events</td>
<td>0.7%</td>
<td>0.8%</td>
<td>0.79 (0.58–1.09)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Rivaroxaban non-inferior

p=0.57 for non-inferiority (two-sided)

Rivaroxaban inferior

p<0.0001 for non-inferiority (one-sided)
Rivaroxaban: Dosing in US

- **A-fib**
 - 20mg daily with evening meal if CrCl > 50
 - 15mg daily with evening meal if CrCl 15-50
- **DVT/PE**
 - 15mg bid with meals x 21 days followed by 20mg daily with meal
 - For patients with CrCl > 30
- **Joint replacement surgery**
 - 10mg daily, 12 days for TKR, 35 days for THR
 - For patients with CrCl > 30

Apixaban

- Predictable pharmacology
- High bioavailability
- Fixed dose
- No requirement for monitoring
- Inhibits free and thrombus associated Xa
- Contraindicated in severe renal insufficiency
- Drug interactions with meds that affect P-gp and CYP3A4 – Ketoconazole, Rifampin, Clarithromycin, St Johns Wort and HIV-protease inhibitors (ritonavir)

Apixaban: FDA Approval

- Stoke and thromboembolic prevention in non-valvular AF
- ARISTOTLE and AVERROES Studies

Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation: ARISTOTLE

- **AF + ≥ 1 additional risk factor:**
 - N = 18,236
 - Age ≥ 75 years
 - P for stroke, TIA, SE
 - CHF or LVEF ≤ 40%
 - BMI
 - Hypertension

- **Apixaban 5 mg PO BID + Placebo**
 - Warfarin+ (target INR 2-3) + Placebo

Primary outcome: Stroke/SE
ARISTOTLE: Primary Outcome

Stoke (ischemic or hemorrhagic) or systemic embolism

<table>
<thead>
<tr>
<th></th>
<th>Apixaban</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at Risk</td>
<td>9120</td>
<td>8726</td>
</tr>
<tr>
<td>6 months</td>
<td>9081</td>
<td>8620</td>
</tr>
<tr>
<td>12 months</td>
<td>8440</td>
<td>8301</td>
</tr>
<tr>
<td>18 months</td>
<td>6051</td>
<td>5972</td>
</tr>
<tr>
<td>24 months</td>
<td>3464</td>
<td>3405</td>
</tr>
<tr>
<td>30 months</td>
<td>1754</td>
<td>1768</td>
</tr>
</tbody>
</table>

21% RRR

P (non-inferiority)<0.001

Granger CB, et al. NEJM 2011;365:981-92

ARISTOTLE: Efficacy Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Apixaban (No/1828)</th>
<th>Warfarin (75/806)</th>
<th>HR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke or systemic embolism*</td>
<td>1.27</td>
<td>1.60</td>
<td>0.73 (0.6, 0.9)</td>
<td>0.031</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.78</td>
<td>1.50</td>
<td>0.79 (0.6, 0.99)</td>
<td>0.132</td>
</tr>
<tr>
<td>Ischemic or uncertain</td>
<td>0.97</td>
<td>1.05</td>
<td>0.92 (0.74, 1.15)</td>
<td>0.42</td>
</tr>
<tr>
<td>Hemorrhagic</td>
<td>0.24</td>
<td>0.47</td>
<td>0.51 (0.35, 0.79)</td>
<td><0.001</td>
</tr>
<tr>
<td>Systemic embolism (SE)</td>
<td>0.99</td>
<td>1.10</td>
<td>0.87 (0.44, 1.76)</td>
<td>0.73</td>
</tr>
<tr>
<td>All-cause death*</td>
<td>3.12</td>
<td>3.94</td>
<td>0.89 (0.6, 0.99)</td>
<td>0.047</td>
</tr>
<tr>
<td>Stroke, SE, or all-cause death</td>
<td>4.48</td>
<td>5.56</td>
<td>0.89 (0.6, 0.98)</td>
<td>0.019</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.53</td>
<td>0.61</td>
<td>0.88 (0.6, 1.17)</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Granger CB, et al. NEJM 2011;365:981-92

ARISTOTLE: Major bleeding

<table>
<thead>
<tr>
<th>Event Rate (%/yr)</th>
<th>Event Rate (%/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apixaban (N=9088)</td>
<td>Warfarin (N=9052)</td>
</tr>
<tr>
<td>2.13</td>
<td>3.09</td>
</tr>
<tr>
<td>0.33</td>
<td>0.60</td>
</tr>
<tr>
<td>0.76</td>
<td>0.86</td>
</tr>
<tr>
<td>0.92</td>
<td>1.13</td>
</tr>
<tr>
<td>0.86</td>
<td>1.40</td>
</tr>
<tr>
<td>0.57</td>
<td>0.70</td>
</tr>
</tbody>
</table>

APixaban: 320 patients, 2.13% per year
Warfarin: 402 patients, 3.09% per year

ARISTOTLE: Bleeding outcomes

<table>
<thead>
<tr>
<th>Event Rate (%/yr)</th>
<th>Event Rate (%/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apixaban (N=9088)</td>
<td>Warfarin (N=9052)</td>
</tr>
<tr>
<td>2.13</td>
<td>3.09</td>
</tr>
<tr>
<td>0.33</td>
<td>0.60</td>
</tr>
<tr>
<td>0.76</td>
<td>0.86</td>
</tr>
<tr>
<td>0.92</td>
<td>1.13</td>
</tr>
<tr>
<td>0.86</td>
<td>1.40</td>
</tr>
<tr>
<td>0.57</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Primary safety outcome: ISTH major bleeding:
2.13 3.09 0.69 (0.60, 0.80) <0.001

Intracranial:
0.33 0.60 0.62 (0.30, 0.58) <0.001

Gastrointestinal:
0.76 0.86 0.89 (0.70, 1.13) 0.37

Major or clinically relevant non-major bleeding:
0.92 1.13 0.68 (0.61, 0.75) <0.001

GUSTO severe bleeding:
0.86 1.40 0.86 (0.35, 0.60) <0.001

TIMI major bleeding:
0.96 1.40 0.57 (0.46, 0.70) <0.001

Any bleeding:
18.1 20.6 0.71 (0.68, 0.75) <0.001

Granger CB, et al. NEJM 2011;365:981-92

ARISTOTLE: Conclusions

• In patients with non-valvular a-fib, Apixaban showed:
 • Non-inferiority to VKA for efficacy: HR=0.79 (0.66-0.95)
 • Superiority for major bleeding: HR=0.69 (0.60-0.80) p<0.001
 • Superiority for reduction in all cause mortality: HR=0.89 (0.89-0.98) p=0.046

Assessment of New Oral Anticoagulants

• In general, they demonstrate equivalent or superior efficacy and major bleeding safety compared to recent standards of care.
Comparison of New Oral Anticoagulants

• **There are no head to head trials comparing these agents. Trends that may suggest any comparative superiority are only hypothesis generating and need confirmation in head to head trials.**

Comparable Efficacy of NOACs in A-Fib

Comparable Major Bleeding with NOACs in A-Fib

Time Warfarin in Therapeutic Range (TTR)

- **RE-LY (DABIGATRAN)**
 - 64% in Warfarin-experienced, 61% in Warfarin-naive

- **ROCKET AF (RIVAROXABAN)**
 - Mean 55%, Median 58%

- **ARISTOTLE (APIXABAN)**
 - Mean 62%, Median 66%

Testing of Hemostatic Function

- **DABIGATRAN**
 - aPTT, thrombin clotting time (TCT) and ecarin clotting time are prolonged
 - TCT has a linear correlation with concentration but prolongs quickly
 - If TCT is not prolonged, Dabigatran level likely is low

- **RIVAROXABAN**
 - Prothrombin time (PT) and anti-Xa affected
 - Prothrombin time (PT) shows a linear dose response and is prolonged to a similar extent as the degree of inhibition of Xa (assay dependent)

Testing of Hemostatic Function

- **APIXABAN**
 - Prothrombin time (PT) and anti-Xa affected

 - Predictive ability of coag assays has not been clinically proven and target drug levels have not been determined. trough levels may not be detected.

 - Anti-Xa activities can be measured against standard curves for each Xa inhibitor but currently unsure what levels are consistent with clinical efficacy or safety
Anticoagulation Interruption Before Surgery

<table>
<thead>
<tr>
<th>CrCl (mL/min)</th>
<th>Half-life (hrs)</th>
<th>Low bleeding risk</th>
<th>Moderate or high bleeding risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 80</td>
<td>13 (11-22)</td>
<td>24 hrs</td>
<td>2 days</td>
</tr>
<tr>
<td>> 50 ≤ 80</td>
<td>15 (12-24)</td>
<td>24 hrs</td>
<td>2 days</td>
</tr>
<tr>
<td>> 30 ≤ 50</td>
<td>18 (13-23)</td>
<td>2 days</td>
<td>4 days</td>
</tr>
<tr>
<td>> 30</td>
<td>27 (22-30)</td>
<td>4 days</td>
<td>6 days</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>≥ 30</td>
<td>Unknown</td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>< 30</td>
<td>24 hrs</td>
<td>2 days</td>
</tr>
<tr>
<td>Apixaban</td>
<td>≥ 30</td>
<td>-</td>
<td>2 days</td>
</tr>
</tbody>
</table>

Reversal of NOACs

- **Dabigatran**
 - Gastric lavage or activated charcoal to reduce absorption
 - Prothrombin complex concentrate (PCC) with efficacy in some animal models, but no effect in reversing coagulation assay abnormalities in human volunteers
 - Recombinant activated factor VII (rFVIIa) did not reverse coagulation assay abnormalities in human volunteers taking Melagatran
 - Acute hemodialysis (only 35% protein bound)
- **Rivaroxaban**
 - Not dialyzable
 - Four factor prothrombin complex concentrate (PCC) at 50 IU/kg reversed all coagulation assay abnormalities in a human volunteer study
 - Treat with PCC or activated factor VIIa
- **Apixaban**
 - Not dialyzable
 - No data, but would treat as would for Rivaroxaban

Reversal of Warfarin: PCC vs FFP

- Retrospective cohort study
 - 2006-2008 – FFP
 - 2008-2010 – PCC (Octaplex, a 4 factor PCC)
 - Adult patients with INR > 1.5
 - Primary outcome was serious adverse events (death, ischemic stroke, myocardial infarction, heart failure, venous thromboembolism or peripheral arterial thromboembolism) within 7 days
 - Secondary outcomes included time to INR reversal, hospital length of stay and red blood cells transfused within 48 hours

Reversal of Warfarin: PCC vs FFP

- 148 patients received FFP, 165 patients received Octaplex
- Serious adverse events
 - 19.5% for FFP
 - 9.7% for Octaplex (p=0.014, Relative Risk (RR) 2.0, 95% CI 1.1 to 3.5)
- Median INR reversal
 - 11.8 hours for FFP
 - 5.7 hours using Octaplex (p<0.0001)
 - Mean red cell transfusion
 - 3.2 units for FFP
 - 1.4 for Octaplex (p<0.0001).
Advantages of New Agents vs. VKAs

- **RAPID ONSET OF ACTION**
 - May replace parenteral anticoagulants for selected conditions
 - Eliminates need for two anticoagulant regimen (i.e. heparin and warfarin)
- **PREDICTABLE THERAPEUTIC EFFECT WITH FIXED OR WEIGHT-BASED DOSING**
 - No routine coagulation monitoring required
- **LIMITED OR NO FOOD OR DRUG INTERACTIONS**
- **SHORT HALF-LIFE**
 - Effect wears off more quickly than VKAs
- **NO NEED FOR BRIDGING AC FOR INVASIVE PROCEDURES**

Disadvantages of New Agents vs. VKAs

- **NO ROUTINE COAGULATION MONITORING**
 - Cannot titrate dose
 - Determination of failure of therapy vs. poor compliance
- **SHORT HALF-LIFE**
 - Anticoagulation effect declines quickly if compliance poor
 - Poor compliance may affect efficacy more than with VKA
- **NO CLINICALLY PROVEN ANTIDOTES**
- **NO MONITORING LAB MARKER AVAILABLE TO RELIABLY MEASURE DRUG ACTIVITY IF NEEDED**
- **POTENTIAL DOSE ADJUSTMENT REQUIRED FOR RENAL OR HEPATIC DYSFUNCTION**
- **COST?**

Populations That Should Be Initially Treated with or Remain on Warfarin Rather Than Be Placed on a Newer Oral Anticoagulant

- **ALREADY TAKING WARFARIN WITH EXCELLENT INR CONTROL**
 - RE-LY data demonstrated equivalent efficacy but increased GI bleeding when comparing Dabigatran 150mg bid to Warfarin with excellent control
- **RENAL INSUFFICIENCY**
 - Consider if CrCl < 30 and definitely if < 15
- **MECHANICAL HEART VALVES**
- **PREDISPOSITION TO GI BLEEDING**
- **POOR COMPLIANCE**
 - Concern regarding the quick loss of anticoagulant effect (question this)
- **CAN'T AFFORD NEWER DRUG**

Populations That Should Consider Treating With Newer Oral Anticoagulants

- **THOSE WITH UNEXPLAINED POOR INR CONTROL**
 - RE-LY data demonstrated equivalent efficacy but increased GI bleeding when comparing Dabigatran 150mg bid to Warfarin with excellent control
- **POOR INR CONTROL DUE TO UNAVOIDABLE DRUG INTERACTION**
 - Recurrent antibiotics, Amiodarone, Chemotherapy, APAP, Azathioprine, polypharmacy
- **NEW PATIENTS ON ANTICOAGULATION WITHOUT SIGNIFICANT RENAL INSUFFICIENCY**
- **CAN AFFORD THE NEW DRUGS**

Acknowledgments

- Gina Bryant
- Amy Shapiro, M.D.
- Chirag Amin, M.D.