Direct Oral Anticoagulants (DOACs)
Who Gets What?

Kathryn Hassell, MD
Professor of Medicine, Division of Hematology
University of Colorado Denver
Disclosures

- No financial or commercial conflicts of interest

- No intended off-label recommendations
Major Reference
ACCP Consensus 2012

CHEST 2012; 141(2)(Suppl) February

Amended by more recent data and FDA approvals
Questions

• What are the differences between the newer oral anticoagulants (DOACs)?

• What are the indications for them?

• What is their role in AF, VTE, pregnancy, and perioperative care?

• What are the data with respect to number needed to treat, number needed to harm? What about irreversibility?
What are the differences between the DOACs?
Anticoagulant Mechanisms of Action

New Oral Anticoagulants: Pharmacological Properties

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Dabigatran Etexilate</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>6.5%</td>
<td>66-80%</td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td>Better in acidic</td>
<td>Slightly delayed by food</td>
<td>Not affected by food</td>
</tr>
<tr>
<td></td>
<td>environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(tartaric acid added)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sl delayed high-fat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{max}</td>
<td>1.25-3 h</td>
<td>0.5-4 h</td>
<td>0.5-3 h</td>
</tr>
<tr>
<td>Half-Life</td>
<td>7-17 h</td>
<td>3.2-11 h</td>
<td>8-15 h</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Converted to active</td>
<td>Metabolized by CYP3A4 (18%)</td>
<td>Metabolized by CYP3A4 and</td>
</tr>
<tr>
<td></td>
<td>drug</td>
<td>and CYP212 (14%)</td>
<td>CYP3A4 and 1A</td>
</tr>
<tr>
<td></td>
<td>by esterases in plasma or liver</td>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>Elimination</td>
<td>80% renal</td>
<td>66% renal</td>
<td>28% renal</td>
</tr>
</tbody>
</table>

Basic Features

• Oral administration
 • No clinically significant differences whether taken with or without food
 • More absorption without food for rivaroxaban at full doses
 • Tartaric acid moiety in dabigatran may create relatively more GI upset
 • Absorbed in the stomach and small intestine
 • Case reports document no apparent difference in bariatric surgery patients but limited data

• Fixed doses
 • No dietary or vitamin K concerns
 • Fewer medication interactions (vs. warfarin)
 • Rivaroxaban trials excluded more patients for other meds
Dosing: Varies by Indication, Renal Function

<table>
<thead>
<tr>
<th>Indication</th>
<th>Dabigatran Etezilate (Pradaxa)</th>
<th>Rivaroxaban (Xarelto)</th>
<th>Apixaban (Eliquis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortho surgery</td>
<td></td>
<td>10 mg/dy</td>
<td>2.5 mg/dy</td>
</tr>
<tr>
<td>↓ renal fctn (GFR)</td>
<td></td>
<td>Avoid if CrCl<30</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>150 mg bid</td>
<td>20 mg/dy</td>
<td>5 mg bid</td>
</tr>
<tr>
<td>↓ renal fctn (GFR)</td>
<td>CrCl 15-30: 75 mg bid</td>
<td>CrCl 15-30:</td>
<td>15 mg/dy</td>
</tr>
<tr>
<td>Acute VTE</td>
<td>150 mg bid after 5-10 dys LMWH</td>
<td>15 mg bid x</td>
<td>10 mg bid x 7 dys</td>
</tr>
<tr>
<td>“Treatment” VTE</td>
<td></td>
<td>5 mg bid</td>
<td></td>
</tr>
<tr>
<td>Reduce risk of recurrence</td>
<td>150 mg bid</td>
<td>20 mg/day</td>
<td>2.5 mg bid</td>
</tr>
</tbody>
</table>
What are the indications for DOACs?
<table>
<thead>
<tr>
<th>Indication</th>
<th>Dabigatran Etexilate (Pradaxa)</th>
<th>Rivaroxaban (Xarelto)</th>
<th>Apixaban (Eliquis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortho surgery</td>
<td></td>
<td>10 mg/dy</td>
<td>2.5 mg/dy</td>
</tr>
<tr>
<td>↓ renal fcn (GFR)</td>
<td></td>
<td>Avoid if CrCl<30</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>150 mg bid</td>
<td>20 mg/dy</td>
<td>5 mg bid</td>
</tr>
<tr>
<td>↓ renal fcn (GFR)</td>
<td>CrCl 15-30: 75 mg bid</td>
<td>CrCl 15-30: 15 mg/dy</td>
<td></td>
</tr>
<tr>
<td>Acute VTE</td>
<td>150 mg bid after 5-10 dys</td>
<td>15 mg bid</td>
<td>10 mg bid</td>
</tr>
<tr>
<td>“Treatment” VTE</td>
<td>15 mg bid 21 dys</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Reduce risk of recurrence</td>
<td>150 mg bid</td>
<td>20 mg/day</td>
<td>2.5 mg bid</td>
</tr>
</tbody>
</table>
DOACs: Not for Use in Some Populations (Yet)

- Pregnancy: animal studies and human placental models demonstrate new oral anticoagulants cross the placenta
 - Not advised in pregnancy

- Breast feeding: intact drug is found in breast milk in animal studies
 - Not advised for women who are breast-feeding

- Chronic kidney disease: apixaban an option

- Patients on interacting medication
 - Some HIV meds, seizure meds, some anti-arrhythmia meds
DOACs: Potential Medication Interactions

- Could have increased or decreased anticoag effect
- May be exacerbated with mild renal insufficiency

Table 2: Concomitant use with agents affecting cytochrome P450 3A4 and P-glycoprotein pathways.

<table>
<thead>
<tr>
<th>Effect on rivaroxaban plasma concentration</th>
<th>Strong inhibitors of both CYP3A4 and P-gp</th>
<th>Moderate to strong CYP3A4 and/or P-gp inhibitors</th>
<th>Strong inducers of CYP3A4</th>
<th>Substrates of CYP3A4 and/or P-gp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect on rivaroxaban plasma concentration</td>
<td>Increase rivaroxaban plasma concentration</td>
<td>Increase plasma concentrations but the effect is not clinically relevant</td>
<td>Decrease rivaroxaban plasma concentration</td>
<td>No clinically relevant effect on rivaroxaban plasma concentration</td>
</tr>
</tbody>
</table>

Drugs

- HIV protease inhibitors
- Azole-antimycotics (Ketoconazole, Itraconazole, Voriconazole, Posaconazole)
- Fluconazole
- Erythromycin
- Clarithromycin
- Amiodarone
- Verapamil
- Rifaximin
- Phenobarbital
- Phenytoin
- Carbamazepine
- St John’s wort
- Digoxin
- Atorvastatin
- Midazolam

Recommendation

- Not recommended
- Permitted Use with caution in patients with renal impairment and increased risk of bleeding
- Permitted Use with caution
- Permitted

*Given the limited clinical data available with dronedarone, co-administration with rivaroxaban should be avoided. CYP, cytochrome P450; P-gp, P-glycoprotein.
Cancer: DOACs Not Yet Indicated

- In patients with DVT or PE, and cancer, per ACCP:
 - LMWH over VKA

 CLOT study

 Lee, NEJM 349:146, 2003

- If not treated with LMWH, recommend VKA over rivaroxaban or dabigatran ("too few patients")

Kearon, Chest 141:e419S, 2012
What is the role of DOACs?

Atrial Fibrillation
ACCP 2012 Guidelines for A Fib

CHADS\textsubscript{2} Score

One point each for:
- CHF
- Hypertension
- Age ≥75
- Diabetes mellitus
- Stroke/TIA history (2 pts)

<table>
<thead>
<tr>
<th>Score</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nothing or ASA 75-325 mg</td>
</tr>
<tr>
<td>≥1</td>
<td>Oral anticoagulant (OAC) or ASA+clopidogrel (if not OAC candidate)</td>
</tr>
</tbody>
</table>

If OAC: favor dabigatran over warfarin

Rivaroxaban or apixaban also?

DOACs and Atrial Fibrillation
Pivotal Trial Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran (n=18,113)</th>
<th>Rivaroxaban (n=14,264)</th>
<th>Apixaban (n=18,206)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (y)</td>
<td>71</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td>Renal fctn (CrCl, ml/min)</td>
<td>NR</td>
<td>Mean 67</td>
<td>16% 25-50</td>
</tr>
<tr>
<td>Mean CHADS2</td>
<td>2.1</td>
<td>3.47</td>
<td>2.3</td>
</tr>
<tr>
<td>ASA Use</td>
<td>39%</td>
<td>35%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Patients with valvular heart disease and artificial valves excluded

DOACs and A Fib
Primary Endpoint: Stroke, Systemtic Emb

Table:

<table>
<thead>
<tr>
<th>DOAC</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>1.11</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>2.1</td>
</tr>
<tr>
<td>Apixaban</td>
<td>1.27</td>
</tr>
</tbody>
</table>

* * p≤.01

DOACs and AF: Major Bleeding

Major Bleeding (%) - DOAC vs. Warfarin

- Dabigatran: 2.71%
- Rivaroxaban: 3.6%
- Apixaban: 2.18%

* p < .001

References:
DOACs and AF: Intracranial Bleed

ICH (%)

Dabigatran 0.3
Rivaroxaban 0.5
Apixaban 0.33

Warfarin

Dabigatran 0.74
Rivaroxaban 0.7
Apixaban 0.8

*p < .02

DOACs for A Fib: “Opt In”

- Generally an elderly population
- No valvular heart disease or artificial valves
- When to consider DOAC instead of warfarin:
 - Good renal function without co-morbidities likely to lead to unrecognized decreases in renal function
 - No interacting meds
 - If on meds with potential interaction, watch out for effects of reduced renal function, poorer clearance with age
 - Remembers their medication
 - Once-daily may be better than twice daily
- Limited concern for bleeding
- Variable INRs (but not from poor adherence)
What is the role of DOACs?

Venous Thromboembolism?
VTE Management

- LMWH + Warfarin

vs.

DOAC
Management of VTE: ACCP 2012

- **Acute Management:** active anticoagulation
 - Subcutaneous LMWH
 - Intravenous or subcutaneous UFH
 - Fondaparinux
 - *Rivaroxaban or apixaban*

- **Other Management Considerations**
 - Initiation of VKA (warfarin) on first day *(if not using rivaroxaban or apixaban)*
 - Continue LMWH/UFH until INR stable and ≥ 2.0 for at least 24 hours
 - Treatment with LMWH/UFH for at least 5 days

ACCP 2012 Guidelines

In patients with DVT or PE, and no cancer, prefer:
- Vitamin K antagonist (VKA, e.g. warfarin) over LMWH
- If not treated with VKA, recommend LMWH over rivaroxaban or dabigatran

In patients with DVT or PE, and cancer, prefer:
- LMWH over VKA
- If not treated with LMWH, recommend VKA over rivaroxaban or dabigatran

Authors note single study for each new agent, few cancer patients (3-5%)

Kearon, Chest 141:e419S, 2012
DOACs and VTE
Pivotal Trial Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran (n=2564)</th>
<th>Rivaroxaban DVT (n=3445)</th>
<th>Rivaroxaban PE (n=4817)</th>
<th>Apixaban (n=5395)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (y)</td>
<td>55</td>
<td>55</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Weight</td>
<td>Mean 85 kg (38-175)</td>
<td>14% >100 kg</td>
<td>14% >100 kg</td>
<td>19% >100 kg</td>
</tr>
<tr>
<td>CrCl</td>
<td>30-50 ml/min</td>
<td>4.7%</td>
<td>6.8%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Hx prior clot</td>
<td>25%</td>
<td>19%</td>
<td>19%</td>
<td>16%</td>
</tr>
<tr>
<td>Thrombophilia</td>
<td>NR</td>
<td>7%</td>
<td>5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Isolated PE</td>
<td>21%</td>
<td>0.6%</td>
<td>75.2%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Unprovoked</td>
<td>NR</td>
<td>62%</td>
<td>64%</td>
<td>90%</td>
</tr>
</tbody>
</table>

DOAC and VTE: Primary Endpoint Recurrent VTE

<table>
<thead>
<tr>
<th>Drug</th>
<th>DOAC (Recurrence)</th>
<th>Warfarin (Recurrence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Rivaroxaban DVT</td>
<td>2.1</td>
<td>3</td>
</tr>
<tr>
<td>Rivaroxaban PE</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Apixaban</td>
<td>2.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

DOACs and VTE
Major Bleeding

- **Dabigatran**: 1.6, 1.9
- **Rivaroxaban DVT**: 0.8, 1.2
- **Rivaroxaban PE**: 1.1, 2.2
- **Apixaban**: 0.6, 1.8

* * * p<.003
DOACs and VTE
“Clinically Relevant” or “All” Bleeding

<table>
<thead>
<tr>
<th>Drug</th>
<th>DOAC</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>5.6</td>
<td>8.8</td>
</tr>
<tr>
<td>Rivaroxaban DVT</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Rivaroxaban PE</td>
<td>10.3</td>
<td>11.4</td>
</tr>
<tr>
<td>Apixaban</td>
<td>4.3</td>
<td>9.8</td>
</tr>
</tbody>
</table>

*p<.003

DOACs for VTE: “Opt out”

- Often a younger, somewhat healthier population
- Non-inferior therapy, as safe or safer than current standard therapy
- Why NOT a DOAC?
 - As for a fib, consider renal function, interacting medications, concern about bleeding
 - Patient and provider comfortable uncomfortable without monitoring
 - Persistent or new symptoms, new clot – missed doses?
 - Concern about adherence
What is the role of DOACs?

Perioperative Management
THA, TKA or Hip Fracture Surgery

- Minimum 10-14 days, one of the following:
 - Heparin/LMWH, fondaparinux
 - Warfarin; for THA/TKA also apixaban, dabigatran, rivaroxaban
 - Aspirin (no dose specified)
 - IPC Device – at least 18 hours/day

- Use of LMWH + mechanical over ASA, warfarin (or new agents for THA/TKA)
 - Cite lack of longer-term safety data for new agents

- Both mechanical and pharmacologic while admitted

- Extended prophylaxis for 35 days
 - Use of new oral agents only if resistance to s.q.

DOACs and Ortho Prophylaxis
Pivotal Trial Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Rivaroxaban TKA (n=2531)</th>
<th>Rivaroxaban THA (n=4541)</th>
<th>Apixaban TKA (n=3057)</th>
<th>Apixaban THA (n=5395)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (y)</td>
<td>67</td>
<td>63</td>
<td>67</td>
<td>60</td>
</tr>
<tr>
<td>Mean Weight</td>
<td>80 kg (up to 150)</td>
<td>78 kg (up to 179)</td>
<td>78 kg</td>
<td>79 kg (up to 180)</td>
</tr>
<tr>
<td>Renal fctn (CrCl, ml/min)</td>
<td>Mean 105</td>
<td>7.5% 30-50</td>
<td>Mean 127</td>
<td>12% < 60</td>
</tr>
</tbody>
</table>

DOAC started 12 hrs post-op
Enoxaparin (40 mg/day) started 12 hrs pre-op

Rivaroxaban vs. Enoxaparin

TKA

- **VTE or Death**
 - Rivaroxaban: 18.9%
 - Enoxaparin: 9.6%
 - *p<0.01*

- **Clinical VTE**
 - Rivaroxaban: 2.6%
 - Enoxaparin: 1.0%
 - *p<0.01*

- **Any bleed**
 - Rivaroxaban: 4.9%
 - Enoxaparin: 4.8%

- **Major bleed**
 - Rivaroxaban: 0.6%
 - Enoxaparin: 0.5%

THA

- **VTE or Death**
 - Rivaroxaban: 6.0%
 - Enoxaparin: 0.3%
 - *p<0.001*

- **Clinical VTE**
 - Rivaroxaban: 3.7%
 - Enoxaparin: 0.5%

- **Any bleed**
 - Rivaroxaban: 6.0%
 - Enoxaparin: 5.9%

- **Major bleed**
 - Rivaroxaban: 0.3%
 - Enoxaparin: 0.1%

Most events venographic calf DVT

Apixaban vs. Enoxaparin

TKA

- **VTE or Death**: Apixaban 15, Enoxaparin 24
- **Clinical VTE**: Apixaban 1.1, Enoxaparin 2.17
- **Any bleed**: Apixaban 6.9, Enoxaparin 8.4
- **Major bleed**: Apixaban 0.6, Enoxaparin 0.9

\(p < 0.01 \) ()

THA

- **VTE or Death**: Apixaban 1.4, Enoxaparin 11.7
- **Clinical VTE**: Apixaban 0.1, Enoxaparin 0.4
- **Any bleed**: Apixaban 11.7, Enoxaparin 12.6
- **Major bleed**: Apixaban 0.8, Enoxaparin 0.7

\(p < 0.001 \) ()

Most events venographic calf DVT; very few PE, none fatal

Lassen, *NEJM* 363:2487, 2010
Ortho Prophylaxis
Perspective and Controversy

- Clinical VTE
 - Low # of events
 - Few fatalities
- Clinical bleeding
 - More common
 - Few fatalities

Chan, *J Thromb Thrombolysis* online pub 11/2014
DOACs for Ortho Surgery: ??

- Hematologist’s view
 - Better protection, cheaper
 - Both LMWH and new agents are irreversible
 - Similar bleeding, although more surgical site bleeding with DOACs

- Depends on the orthopedist
 - If they’re OK with LMWH, then they should be OK with DOACs
 - If they use warfarin or ASA, bleeding will be higher with DOACs (but data suggest so will clotting…)}
DOACs as “Bridging Agents”

- NO data for use of DOACs instead of LMWH for bridging off and back onto warfarin
- Variable effect on INR
 - Difficult to assess effect of warfarin vs. DOAC in the post-op setting

What are the data with respect to NNT/NNH?

After all, they’re irreversible...
DOACs and AF: Thromboembolism/Stroke

<table>
<thead>
<tr>
<th>Study</th>
<th>All cause stroke/embolism</th>
<th>Ischemic/unspecified stroke</th>
<th>Hemorrhagic stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-LY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKET AF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARISTOTLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>(\chi^2 = 55.9, p = 0.104)</td>
<td>(\chi^2 = 0.0, p = 0.522)</td>
<td>(\chi^2 = 52.2, p = 0.124)</td>
</tr>
</tbody>
</table>

DOACs and AF: Bleeding

NNT for DOACs vs. Warfarin

- Atrial Fibrillation
 - To avoid one hemorrhagic stroke, need to treat 153 (RR 0.43, 95% CI 0.34-0.55)
 - No difference in extracranial major bleeding
 - To save one life from any cause of death, need to treat 43 (RR 0.90, 95% CI 0.84-0.96)
 - No difference in MI
- No NNH calculable

DOACs for VTE: One Meta-analysis

Kakkos, Eur J Vasc Endovasc Surg 48:565, 2014

Symptomatic VTE

DVT
DOACs for VTE: One Meta-analysis

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>NOAs Events</th>
<th>NOAs Total</th>
<th>VKAs Events</th>
<th>VKAs Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-COVER</td>
<td>1 1274</td>
<td>3 1265</td>
<td>30.1%</td>
<td>0.33 [0.03, 3.18] 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EINSTEIN-DVT</td>
<td>1 1731</td>
<td>0 1718</td>
<td>5.0%</td>
<td>2.80 [0.12, 73.04] 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EINSTEIN-PE</td>
<td>2 2419</td>
<td>1 2413</td>
<td>10.0%</td>
<td>2.00 [0.18, 21.99] 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPLIFY</td>
<td>1 2891</td>
<td>2 2704</td>
<td>19.9%</td>
<td>0.50 [0.05, 5.54] 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hokusai-VTE</td>
<td>4 4118</td>
<td>3 4122</td>
<td>30.0%</td>
<td>1.33 [0.30, 5.96] 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE-COVER II</td>
<td>3 1279</td>
<td>0 1289</td>
<td>5.0%</td>
<td>7.05 [0.96, 53.64] 2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI)

- **NOAs Events**: 13512
- **NOAs Total**: 13511
- **VKAs Weight**: 100.0%
- **Risk Ratio**: 1.39 [0.57, 2.96] 2014

Total events: 139

- **Heterogeneity**: Chi² = 3.64, df = 5 (P = 0.60); I² = 0%

Test for overall effect: Z = 0.62 (P = 0.53)

Fatal PE

Non-fatal PE

DOACs for VTE: One Meta-analysis

Kakkos, Eur J Vasc Endovasc Surg 48:565, 2014

- Major bleeding

- Clinically relevant non-major bleeding
DOACs for VTE: One Meta-analysis

Kakkos, Eur J Vasc Endovasc Surg 48:565, 2014

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>NOAs Events</th>
<th>NOAs Total</th>
<th>VKAs Events</th>
<th>VKAs Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-COVER</td>
<td>21</td>
<td>1274</td>
<td>21</td>
<td>1265</td>
<td>6.5%</td>
<td>0.99 [0.56, 1.81] 2009</td>
</tr>
<tr>
<td>EINSTEIN-DVT</td>
<td>38</td>
<td>1710</td>
<td>48</td>
<td>1711</td>
<td>15.2%</td>
<td>0.77 [0.51, 1.17] 2010</td>
</tr>
<tr>
<td>EINSTEIN-PE</td>
<td>58</td>
<td>2412</td>
<td>60</td>
<td>2405</td>
<td>15.5%</td>
<td>1.16 [0.80, 1.68] 2012</td>
</tr>
<tr>
<td>AMPLIFY</td>
<td>41</td>
<td>2678</td>
<td>52</td>
<td>2889</td>
<td>18.1%</td>
<td>0.79 [0.53, 1.20] 2013</td>
</tr>
<tr>
<td>Hokusai-VTE</td>
<td>132</td>
<td>4118</td>
<td>126</td>
<td>4122</td>
<td>39.0%</td>
<td>1.05 [0.82, 1.33] 2013</td>
</tr>
<tr>
<td>RE-COVER II</td>
<td>25</td>
<td>1280</td>
<td>25</td>
<td>1288</td>
<td>7.7%</td>
<td>1.01 [0.58, 1.84] 2014</td>
</tr>
</tbody>
</table>

Total (95% CI) 13478 13480 100.0% 0.98 [0.84, 1.14]

Total events 315 323

Heterogeneity: Ch² = 3.37, df = 5 (P = 0.64); I² = 0%
Test for overall effect: Z = 0.62 (P = 0.75)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>NOAs Events</th>
<th>NOAs Total</th>
<th>VKAs Events</th>
<th>VKAs Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-COVER</td>
<td>1</td>
<td>1274</td>
<td>1</td>
<td>1265</td>
<td>4.1%</td>
<td>0.99 [0.06, 15.86] 2009</td>
</tr>
<tr>
<td>EINSTEIN-DVT</td>
<td>2</td>
<td>1710</td>
<td>5</td>
<td>1711</td>
<td>20.4%</td>
<td>0.40 [0.08, 2.05] 2010</td>
</tr>
<tr>
<td>EINSTEIN-PE</td>
<td>5</td>
<td>2412</td>
<td>4</td>
<td>2405</td>
<td>16.3%</td>
<td>1.25 [0.34, 4.64] 2012</td>
</tr>
<tr>
<td>Hokusai-VTE</td>
<td>2</td>
<td>4118</td>
<td>10</td>
<td>4122</td>
<td>40.8%</td>
<td>0.20 [0.04, 0.91] 2013</td>
</tr>
<tr>
<td>AMPLIFY</td>
<td>2</td>
<td>2678</td>
<td>3</td>
<td>2889</td>
<td>12.2%</td>
<td>0.67 [0.11, 4.01] 2013</td>
</tr>
<tr>
<td>RE-COVER II</td>
<td>0</td>
<td>1280</td>
<td>1</td>
<td>1288</td>
<td>6.1%</td>
<td>0.34 [0.01, 0.63] 2014</td>
</tr>
</tbody>
</table>

Total (95% CI) 13478 13480 100.0% 0.51 [0.26, 1.01]

Total events 12 24

Heterogeneity: Ch² = 3.70, df = 5 (P = 0.59); I² = 0%
Test for overall effect: Z = 1.94 (P = 0.05)

All-cause mortality

Fatal bleeding
DOACs for VTE: One Meta-analysis

Kakkos, Eur J Vasc Endovasc Surg 48:565, 2014

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>NOAs Events</th>
<th>Total</th>
<th>VKAs Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-COVER</td>
<td>50 1274</td>
<td></td>
<td>51 1265</td>
<td></td>
<td>9.8%</td>
<td>0.97 [0.68, 1.43] 2009</td>
</tr>
<tr>
<td>EINSTEIN-DVT</td>
<td>51 1731</td>
<td></td>
<td>73 1718</td>
<td></td>
<td>13.7%</td>
<td>0.69 [0.49, 0.99] 2010</td>
</tr>
<tr>
<td>EINSTEIN-PE</td>
<td>83 2419</td>
<td></td>
<td>95 2413</td>
<td></td>
<td>18.0%</td>
<td>0.88 [0.65, 1.15] 2012</td>
</tr>
<tr>
<td>AMPLIFY</td>
<td>74 2576</td>
<td></td>
<td>120 2689</td>
<td></td>
<td>22.4%</td>
<td>0.62 [0.47, 0.82] 2013</td>
</tr>
<tr>
<td>Hokusai-VTE</td>
<td>120 4118</td>
<td></td>
<td>144 4122</td>
<td></td>
<td>27.0%</td>
<td>0.83 [0.66, 1.06] 2013</td>
</tr>
<tr>
<td>RE-COVER II</td>
<td>45 1279</td>
<td></td>
<td>50 1289</td>
<td></td>
<td>9.3%</td>
<td>0.91 [0.81, 1.05] 2014</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>13497</td>
<td></td>
<td>13498</td>
<td></td>
<td>100.0%</td>
<td>0.79 [0.70, 0.90]</td>
</tr>
</tbody>
</table>

Total events: 423 NOAs, 534 VKAs
Heterogeneity: Chi² = 5.49, df = 5 (P = 0.38); I² = 9%
Test for overall effect: Z = 3.65 (P = 0.0003)

Net benefit
NNT for DOACs vs. Warfarin

- VTE treatment
 - To avoid one major bleed, need to treat 149-155 (RR 0.60-0.63)
 - To avoid one fatal bleed, need to treat 1111 (RR 0.36-0.51)
 - Absolute risk of dying from bleeding goes from 1.8/1000 to 0.9/1000
- No NNH calculable

Eur JVasc Endovasc Surg 48:565, 2014;
Ortho Prophylaxis and Rivaroxaban NNT/NNH

Table 3 Kaplan–Meier event rates, rate difference, number needed to treat/number needed to harm, and net clinical benefit for total hip arthroplasty (RECORD1 and RECORD2) and total knee arthroplasty (RECORD3 and RECORD4) patients

<table>
<thead>
<tr>
<th>End point</th>
<th>Events per 10,000 patients</th>
<th>Rate difference (per 10,000 patients)</th>
<th>NNT or NNH</th>
<th>Net clinical benefit (sum of rate differences)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rivaroxaban</td>
<td>Enoxaparin</td>
<td>(rivaroxaban – enoxaparin)</td>
<td>n</td>
</tr>
<tr>
<td>RECORD111 and RECORD212 (day 70) – total hip arthroplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic VTE plus all-cause mortality</td>
<td>46</td>
<td>84</td>
<td>-38</td>
<td>-82 to 6</td>
</tr>
<tr>
<td>Nonfatal major bleeding</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>-15 to 26</td>
</tr>
<tr>
<td>RECORD313 and RECORD414 day 47) – total knee arthroplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic VTE plus all-cause mortality</td>
<td>121</td>
<td>219</td>
<td>-98</td>
<td>-169 to -27</td>
</tr>
<tr>
<td>Nonfatal major bleeding</td>
<td>71</td>
<td>48</td>
<td>23</td>
<td>-19 to 64</td>
</tr>
</tbody>
</table>

NNT is 4-6x lower than NNH; comparator NOT placebo

Levitan Vasc Health Risk Manag 10:157, 2014
DOACs, Bleeding and Reversibility

- Bleeding is often fatal because the hole is too big or there are too many of them
 - no matter what drug is in the system

- No increase (actually, sometimes less) fatal bleeding in all studies for those on DOACs as compared to warfarin
 - Over 25,000 people exposed for up to two years and/or in a post-op setting
 - Large groups were 70-75 years old and 35% were also on ASA

Eerenberg, *Circulation* 124:1508, 2011
DOACs, Bleeding and Reversibility

- Primary focus: address the bleeding
- Efforts to address the drug
 - No benefit to FFP, vitamin K
 - Decrease quantity of drug
 - Activated charcoal if thought to still be in stomach
 - Dabigatran may be dialyzed
- Bypass the drug effect
 - Prothrombin complex (PCC), factor VIIa concentrates anecdotally used – no controlled trials
 - Recent study suggested aPCC may work best for anti-Xa (rivaroxaban, apixaban) but not anti-thrombin (dabigatran)

Eerenberg, *Circulation* 124:1508, 2011
4-Factor PCC: FDA Approved for Major Bleeding with Warfarin

- Kcentra (US) / Beriplex (Europe)
 - Approved for major bleeding with warfarin
 - Dosing guide per package insert:

<table>
<thead>
<tr>
<th>Table 1: Dosing Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment INR</td>
</tr>
<tr>
<td>2 – < 4</td>
</tr>
<tr>
<td>4 – 6</td>
</tr>
<tr>
<td>> 6</td>
</tr>
<tr>
<td>Dose of Kcentra (units of Factor IX) / kg body weight</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Maximum dose (units of Factor IX)</td>
</tr>
<tr>
<td>Not to exceed 2500</td>
</tr>
<tr>
<td>Not to exceed 3500</td>
</tr>
<tr>
<td>Not to exceed 5000</td>
</tr>
</tbody>
</table>

- Studies excluded patients with hx of arterial clot within last 3 months, APS, HIT, PC/PS/AT def
- No mortality benefit, ?increased risk of thrombosis

Questions – Some Answers

• What are the differences between the newer oral anticoagulants (DOACs)?
 Dosing/half-life, renal clearance, reversal strategy?

• What are the indications for them?
 A fib, VTE, ortho prophylaxis

• What is their role in AF, VTE, pregnancy, and perioperative care? (ortho proph, but not bridging)
 As safe/effective if used in the right person

• What are the data with respect to number needed to treat, number needed to harm?
 NNT <<< NNH; no clear impact of irreversibility
(Additional) Questions?