Heart Failure for the Primary Care Provider

Clara V. Massey, M.D., FACC, FACP
Division of Cardiology
University of South Alabama
Heart Failure

“Two of the scariest words in the English language.”
Objectives

- Review Heart Failure (HF) statistics and the impact on health care costs
- Briefly review the data supporting evidence based delivery of care
- Define CORE Measures: TJC criteria for “grading” in hospital HF care
- Discuss heart failure management: from ACE inhibitor to device therapy
Heart Failure Epidemic

- 5.7 million Americans are currently living with heart failure
- 670,000 new cases diagnosed each year
- With aging of the baby boomers:
 - Growing epidemic
 - Rising healthcare costs
CHF Epidemic

- Major public health problem resulting in substantial morbidity and mortality
 (76% men & 69% women die within 5 years)
- Despite advances, outcomes data suggests a substantial number of patients are not receiving optimal care

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Prevalence</th>
<th>Incidence</th>
<th>Mortality</th>
<th>Hospital Discharges</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>5,700,000</td>
<td>670,000</td>
<td>277,193</td>
<td>990,000</td>
<td>$39.2 billion</td>
</tr>
</tbody>
</table>

Estimated Direct and Indirect Costs of HF in US

Total Cost
$39.2 billion

Hospitalization $20.9 (53.3%)
Lost Productivity/Mortality* $4.1 (10.5%)
Home Healthcare $3.8 (9.7%)
Drugs/Other Medical Durables $3.2 (8.2%)
Nursing Home $4.7 (11.9%)
Physicians/Other Professionals $2.5 (6.4%)

Heart Failure Hospitalizations

1.0 Million Hospitalizations a Year and Rising

The majority of patients hospitalized with HF were previously hospitalized with HF

United States: 1979-2006 Source: NHDS/NCHS, NHLBI. Hospital Compare 2007-2010

30-Day Rehospitalization Rates in HF
24.8% (Medicare)
Evidence Based, Guidelines Driven Heart Failure Care

- Improves outcomes
- Reduces healthcare expenditures
- Increases hospital and physician reimbursement
- Avoids financial penalties
Improved Adherence to ACC/AHA HF Guidelines Translates to Improved Clinical Outcomes

- Each 10% improvement in ACC/AHA guideline-recommended composite care is associated with a 13% lower mortality rate at 24 months p<0.0001.

Established Benefits of Guideline-Recommended HF Therapies

<table>
<thead>
<tr>
<th>Guideline Recommended Therapy</th>
<th>Relative Risk Reduction in Mortality</th>
<th>Number Needed to Treat for Mortality</th>
<th>NNT for Mortality (standardized to 36 months)</th>
<th>Relative Risk Reduction in HF Hospitalizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEI/ARB</td>
<td>17%</td>
<td>22 over 42 months</td>
<td>26</td>
<td>31%</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td>34%</td>
<td>28 over 12 months</td>
<td>9</td>
<td>41%</td>
</tr>
<tr>
<td>Aldosterone Antagonist</td>
<td>30%</td>
<td>9 over 24 months</td>
<td>6</td>
<td>35%</td>
</tr>
<tr>
<td>Hydralazine/Nitrate</td>
<td>43%</td>
<td>25 over 10 months</td>
<td>7</td>
<td>33%</td>
</tr>
<tr>
<td>CRT</td>
<td>36%</td>
<td>12 over 24 months</td>
<td>8</td>
<td>52%</td>
</tr>
<tr>
<td>ICD</td>
<td>23%</td>
<td>14 over 60 months</td>
<td>23</td>
<td>NA</td>
</tr>
</tbody>
</table>

Core Measures

- Documentation of LV Systolic Function
- ACE or ARB (if EF<40%)
- Complete Discharge Instructions
- Other
 - Beta Blocker
 - ICD/CRT
 - Smoking Cessation
Complete Discharge Instructions

- 6 items that must be addressed:
 - Activity level
 - Diet instructions
 - Follow-up care
 - Home medications
 - Teaching on daily weight monitoring
 - Instruction regarding recognition of symptoms and what to do when they occur
Penalties for 30 Day Readmission Rate

- Hospitals with a high 30-day readmission rate will experience a reduction in reimbursement

 - Maximum of 1% starting in October 2012
 - Maximum of 2% in 2013
 - Maximum of 3% by 2014
Causes of Hospital Readmission for Heart Failure

Over 2/3 of HF Hospitalizations Preventable

- Diet Noncompliance: 24%
- Inappropriate Rx: 16%
- Noncompliance: 24%
- Failure to Seek Care: 19%
- Other: 17%

Annals of Internal Medicine 122:415-21, 1995
All-Cause Mortality After Each Subsequent Hospitalization for HF

<table>
<thead>
<tr>
<th>Hospitalization</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st admission</td>
<td>14,374</td>
</tr>
<tr>
<td>2nd admission</td>
<td>3,358</td>
</tr>
<tr>
<td>3rd admission</td>
<td>1,123</td>
</tr>
<tr>
<td>4th admission</td>
<td>417</td>
</tr>
</tbody>
</table>

1st hospitalization: 30-day mortality = 12%; 1-year mortality = 34%

Management of Heart Failure

Overview

Primary aims of therapy

- Improve symptoms and quality of life
 - Relieve circulatory congestion
 - Increase tissue perfusion
- Prolong life by slowing disease progression
 - Reduce vasoconstriction
 - Inhibit activation of the renin-angiotensin-aldosterone system and the sympathetic nervous system
 - Inhibit progressive enlargement or remodeling of the left ventricle
Clinical Evaluation

- Evaluate for myocardial ischemia during the initial assessment
- Evaluate for precipitating causes
Common Factors That Precipitate Hospitalization for Heart Failure

- Noncompliance with medical regimen, sodium and/or fluid restriction
- Acute myocardial ischemia
- Uncorrected high blood pressure
- Atrial fibrillation and other arrhythmias
- Recent addition of negative inotropic drugs (verapamil, nifedipine, diltiazem, beta blockers)
- Pulmonary embolus
- Nonsteroidal anti-inflammatory drugs
- Excessive alcohol or illicit drug use
- Endocrine abnormalities (diabetes mellitus, thyroid dysfunction)
- Concurrent infections (pneumonia, viral illness)
Clinical Evaluation

Features that increase the likelihood of heart failure
- Paroxysmal nocturnal dyspnea (2-fold increase)
- Presence of an S₃ (11-fold increase)

Features that decrease the likelihood of heart failure
- Absence of dyspnea on exertion (50% decrease)
- Absence of crackles on pulmonary auscultation (50% decrease)

*Predictability of the clinical exam: diminishes significantly in chronic or gradually developing HF
Diagnostic Testing

Echocardiography –

- An essential part of the initial evaluation
- Necessary for distinguishing systolic heart failure from heart failure with preserved systolic function
- Reassessment most useful when there is a change in clinical status (not at regular or arbitrary intervals)
Heart Failure with Preserved Systolic Function

- Diagnosed when signs and symptoms of heart failure are present
- Normal LV ejection fraction by echo
- Absence of valvular or pericardial abnormalities that would explain symptoms
- Approximately 50% of HF patients have preserved systolic function
<table>
<thead>
<tr>
<th>Table 6. Differential Diagnosis in a Patient with Heart Failure and Normal Left Ventricular Ejection Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect diagnosis of HF</td>
</tr>
<tr>
<td>Inaccurate measurement of LVEF</td>
</tr>
<tr>
<td>Primary valvular disease</td>
</tr>
<tr>
<td>Restrictive (infiltrative) cardiomyopathies</td>
</tr>
<tr>
<td>Amyloidosis, sarcoidosis, hemochromatosis</td>
</tr>
<tr>
<td>Pericardial constrictive</td>
</tr>
<tr>
<td>Episodic or reversible LV systolic dysfunction</td>
</tr>
<tr>
<td>Severe hypertension, myocardial ischemia</td>
</tr>
<tr>
<td>HF associated with high metabolic demand</td>
</tr>
<tr>
<td>Anemia, thyrotoxicosis, arteriovenous fistulae</td>
</tr>
<tr>
<td>Chronic pulmonary disease with right HF</td>
</tr>
<tr>
<td>Pulmonary hypertension associated with pulmonary vascular disorders</td>
</tr>
<tr>
<td>Atrial myxoma</td>
</tr>
<tr>
<td>Diastolic dysfunction of uncertain origin</td>
</tr>
<tr>
<td>Obesity</td>
</tr>
</tbody>
</table>

HF = heart failure; LVEF = left ventricular ejection fraction; LV = left ventricular.
Diagnostic Testing

Electrocardiogram

- Evidence of prior MI
- Atrial enlargement
- Ventricular hypertrophy
- Arrhythmia or conduction abnormalities
Diagnostic Testing

Laboratory Evaluation

- Electrolytes
- Renal function
- Hepatic function
- Blood counts
- Thyroid function
- BNP
Diagnostic Testing

BNP

- BNP <100 pg/ml in a patient with acute dyspnea makes acute HF unlikely
- Not a reliable measure of severity of chronic heart failure
- Use caution when interpreting BNP levels outside the acute setting
- Patients with chronic HF can have very low BNP levels
<table>
<thead>
<tr>
<th>ACC/AHA Stage</th>
<th>NYHA Functional Class</th>
<th>Estimated 1-Year Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>—</td>
<td>See note</td>
</tr>
<tr>
<td>B</td>
<td>I</td>
<td>5%–10%</td>
</tr>
<tr>
<td></td>
<td>Asymptomatic</td>
<td>5%–10%</td>
</tr>
<tr>
<td>C</td>
<td>II</td>
<td>15%–30%</td>
</tr>
<tr>
<td></td>
<td>Symptomatic; slight limitation of physical activity</td>
<td>15%–30%</td>
</tr>
<tr>
<td></td>
<td>III<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symptomatic; marked limitation of physical activity</td>
<td>15%–30%</td>
</tr>
<tr>
<td>D</td>
<td>III<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symptomatic; marked limitation of physical activity</td>
<td>15%–30%</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inability to perform any physical activity without symptoms</td>
<td>50%–60%</td>
</tr>
</tbody>
</table>
Table 12. Medical Therapy for Systolic Heart Failure by Functional Status

<table>
<thead>
<tr>
<th>Class</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All NYHA classes (I-IV):</td>
<td>ACE inhibitor (if ACE inhibitor is not tolerated because of cough, an ARB can be used; if ACE inhibitor is contraindicated because of hyperkalemia or renal insufficiency, hydralazine/isosorbide dinitrate can be used)</td>
</tr>
<tr>
<td></td>
<td>β-Blocker</td>
</tr>
<tr>
<td>NYHA class I-II (asymptomatic or mild symptoms):</td>
<td>Diuretic as needed to maintain euvolemia</td>
</tr>
<tr>
<td>NYHA class III-IV (moderate to severe symptoms):</td>
<td>Spironolactone (if bothersome side effect of gynecomastia occurs, eplerenone can be used)</td>
</tr>
<tr>
<td></td>
<td>For black patients, hydralazine/isosorbide dinitrate</td>
</tr>
<tr>
<td></td>
<td>Digoxin</td>
</tr>
<tr>
<td></td>
<td>Diuretic as needed to maintain euvolemia</td>
</tr>
</tbody>
</table>
Medical Therapy

ACE/ARB

- All NYHA functional class systolic HF including asymptomatic (Class I) patients
- Reduces mortality and morbidity in asymptomatic as well as symptomatic patients
- Delays the onset of clinical heart failure in asymptomatic patients
- Decreases overall mortality by 20%
- Decreases MI by 20%
- Reduces hospitalization for HF by 30-40%
ACE/ARB

- Ace inhibitors increase bradykinin, development of an Ace cough occurs in 10% patients
- Ace preferred over ARB as first choice
- Primary reason to select an ARB is the development of an Ace cough
- Lower incidence of Hyperkalemia with an ARB
- No difference in incidence of renal insufficiency between ACE and ARB
Medical Therapy

ACE/ARB

- Angioedema a rare but life threatening side effect
- If angioedema occurs avoid both Ace and ARB
- Combined treatment not recommended, offers no proven benefit
- Adverse effects of combination therapy: worsening renal function and symptomatic hypotension
Medical Therapy

ACE/ARB

- Avoid initiation of vasodilators in the setting of hypovolemia (ACE/ARB/Hydralazine)
- Hydralazine/isosorbide dinitrate combination: a suitable alternative in the setting of acute renal failure or hyperkalemia
- Benefit of high versus low dose Ace is minor (potentially fewer hospitalizations but no survival benefit)
- Follow up blood work: Potassium and creatinine levels 1-2 weeks post initiation
- Abrupt withdrawal should be avoided
Medical Therapy

β-Blockers

- All NYHA functional class systolic HF including asymptomatic (Class I) and severe (Class IV) patients
- 30% reduction in overall mortality
- Reduction in sudden death
- Reduction in death due to pump failure
Medical Therapy

β-Blockers indicated for HF

- Extended release metoprolol
 (succinate not tartrate)
- Carvedilol
- Bisoprolol
- No head to head study between Metoprolol ER and Carvedilol
Medical Therapy

β-Blockers

- Don’t initiate if acutely decompensated (hypotensive or volume overloaded)
- Results in a transient decline in cardiac output
- Initiate once euvolemic or near-euvolemic (often just prior to discharge)
- Large trials excluded patients with B/P<85 mmHg
β-Blockers

Adverse effects

- <1% incidence of significant fatigue generally resolves in 1-2 weeks
- Hypotension, usually asymptomatic, manifests in 24-48 hours after first dose or with an increase in dosage
- Exacerbation of bronchospastic pulmonary disease: low except in patients with refractory pulmonary disease
- In reactive airway disease, choose the more β₁ cardioselective agent (metoprolol succinate)
Initiating Ace and β-Blockers

Factors determining Ace, β-Blocker or both

- Blood pressure
- Creatinine
- Potassium
- Contraindications to either drug
Initiating Ace and β-Blockers

- If euvoletic, with an acceptable BP and without an elevated creatinine or potassium, both can likely be tolerated.
- Unless arrhythmia or acute renal injury, begin with Ace, add β-Blocker.
- More beneficial to add β-Blocker than to try to maximize the Ace.
- Minimize risk of hypotension by staggering the timing of β-Blocker and Ace dosing.
Medical Therapy

Diuretics

- Used for the management of volume overload
- Typically needed to achieve euvolemia and on a long term basis to prevent recurrence
- Spironolactone only diuretic shown to improve survival in NYHA Class III or IV patients
- Spironolactone at doses for HF is a weak diuretic
- Loop diurectics are used for volume overload because of their superior natriuretic effect (furosemide, bumetanide and torsemide)
Diuretics

Management of Diuretic Resistance

- Restriction of fluid <2L/dy
- Sodium restriction <2000 mg/dy
- If gut edema, change to a diuretic with enhanced bioavailability (bumetanide or torsemide)
- Change route of administration
- Change timing of administration
- Use of diuretic combinations
 (Loop Diuretic + HCTZ or Metalazone)
- Consider continuous infusion if maximum intermittent IV dosing is ineffective
Medical Therapy

Digoxin

- Role primarily for symptom control in NYHA Class III or IV patients
- No mortality benefit
- Shown to reduce hospitalizations
- Lower serum concentrations as effective as higher levels
- Digoxin levels ≥1.2 ng/ml associated with higher mortality
Medical Therapy

Spironolactone

- Recommended in addition to Ace and β-Blocker in NYHA Class III or IV patients
- RALES trial demonstrated 30% reduction in mortality and 35% reduction in hospitalizations
Spironolactone

Risk factors for Hyperkalemia

- Impaired renal function (creatinine ≥ 1.6 mg/dl or GFR < 30 ml/min)
- Concurrent use of higher doses of ACE (≥10mg of Enalapril or Lisinopril)
- Potassium ≥ 5.0 mEq/L
- Concomitant use of NSAIDs
- Potassium supplementation
Spironolactone

Potassium monitoring

- 3 days after initiation
- 1 week
- Q monthly for a minimum of 3 months
Medical Therapy

Eplerenone

• 15% reduction in mortality among patients with LV dysfunction after an acute MI
• Can be used in place of Spironolactone if gynecomastia develops
Table 13. Oral Medications Commonly Used for Treatment of Heart Failure

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Dose</th>
<th>Maximum Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captopril</td>
<td>6.25 mg TID</td>
<td>50 mg TID</td>
</tr>
<tr>
<td>Enalapril</td>
<td>2.5 mg BID</td>
<td>10-20 mg BID</td>
</tr>
<tr>
<td>Fosinopril</td>
<td>5-10 mg once daily</td>
<td>40 mg once daily</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>2.5-5.0 mg once daily</td>
<td>20-40 mg once daily</td>
</tr>
<tr>
<td>Quinapril</td>
<td>5 mg BID</td>
<td>20 mg BID</td>
</tr>
<tr>
<td>Ramipril</td>
<td>1.25-2.5 mg once daily</td>
<td>10 mg once daily</td>
</tr>
<tr>
<td>Trandolapril</td>
<td>1 mg once daily</td>
<td>4 mg once daily</td>
</tr>
<tr>
<td>ARBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candesartan</td>
<td>4-8 mg once daily</td>
<td>32 mg once daily</td>
</tr>
<tr>
<td>Losartan<sup>a</sup></td>
<td>25-50 mg once daily (may divide dose to twice daily)</td>
<td>50-100 mg once daily</td>
</tr>
<tr>
<td>Valsartan</td>
<td>20-40 mg BID</td>
<td>160 mg BID</td>
</tr>
<tr>
<td>β-Blockers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisoprolol<sup>a</sup></td>
<td>1.25 mg once daily</td>
<td>10 mg once daily<sup>b</sup></td>
</tr>
<tr>
<td>Carvedilol</td>
<td>3.125 mg BID</td>
<td>25 mg BID; 50 mg BID for >85 kg<sup>b</sup></td>
</tr>
<tr>
<td>Metoprolol succinate</td>
<td>12.5-25.0 mg daily</td>
<td>200 mg once daily<sup>b</sup></td>
</tr>
<tr>
<td>Loop diuretics<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumetanamide</td>
<td>0.5-1.0 mg once or twice daily</td>
<td>Up to 10 mg daily<sup>d</sup></td>
</tr>
<tr>
<td>Furosemide</td>
<td>20-40 mg once or twice daily</td>
<td>Up to 600 mg daily<sup>d</sup></td>
</tr>
<tr>
<td>Torsemide</td>
<td>10-20 mg once daily</td>
<td>Up to 200 mg daily<sup>d</sup></td>
</tr>
<tr>
<td>Digitalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digoxin</td>
<td>0.125-0.250 mg once daily</td>
<td>0.125-0.250 mg once daily</td>
</tr>
<tr>
<td>Aldosterone antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5 to 25.0 mg once daily</td>
<td>50 mg once daily</td>
</tr>
<tr>
<td>Eplerenone</td>
<td>25 mg once daily</td>
<td>50 mg once daily</td>
</tr>
</tbody>
</table>

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; BID = twice daily; TID = three times daily.

^aOff-label use.
^bTarget dose.
^cThiazide diuretics are not listed but may be appropriate for patients with mild heart failure or associated hypertension or as a second diuretic in patients refractory to loop diuretics alone.
^dTitrated to achieve dry weight.
Hydralazine & Isosorbide Dinitrate

AAHEFT (African American Heart Failure Trial)
- Blacks with severe heart failure (NYHA Class III or IV)
- 40% reduction in mortality
- Added to standard therapy (Ace/ARB and β-Blocker)
- As with all vasodilators, need adequate B/P before initiation
- Generally tolerated in severe heart failure without hypotension because vasodilation increases cardiac output
Table 12. Medical Therapy for Systolic Heart Failure by Functional Status

Initial Therapy

All NYHA classes (I-IV):
ACE inhibitor (if ACE inhibitor is not tolerated because of cough, an ARB can be used; if ACE inhibitor is contraindicated because of hyperkalemia or renal insufficiency, hydralazine/isosorbide dinitrate can be used)

β-Blocker

Additional Therapy

NYHA class I-II (asymptomatic or mild symptoms):
Diuretic as needed to maintain euvolemia

NYHA class III-IV (moderate to severe symptoms):
Spironolactone (if bothersome side effect of gynecomastia occurs, eplerenone can be used)
For black patients, hydralazine/isosorbide dinitrate

Digoxin

Diuretic as needed to maintain euvolemia
Calcium Channel Blockers

- First generation increases the risk of acute decompensation and hospitalization (nifedipine, verapamil)
- Second generation without added risk
- Used for management of hypertension and angina
- Amlidopine and Felodipine only calcium channel blockers with neutral effects on mortality in heart failure trials
Device Therapy

(AICD) Implantable Cardioverter – Defibrillator

- Improves survival in appropriate candidates
- Inadequate data to guide use in NYHA Class I or NYHA Class IV patients
Device Therapy

Cardiac Resynchronization Therapy (CRT)

- Intraventricular conduction delay (LBBB) results in poor coordination of ventricular contraction
- 1 pulse generator can provide support for both biventricular pacing and ICD discharge
Device Therapy

CRT

- Improves quality of life
- Reduces symptoms
- 37% reduction in hospitalizations
- 22% reduction in all cause mortality
- 30% of patients meeting criteria have no improvement
- Improvement in eligibility criteria is needed
Evidence-Based Treatment for Heart Failure with Reduced LVEF

Reduce Mortality
- ACEI or ARB
- β-Blocker
- Aldosterone Antagonist

Control Volume
- Sodium Restriction*
- Diuretics*

Treat Residual Symptoms
- Digoxin*

Enhance Adherence
- CRT ± an ICD*
- Hyd/ISDN*
- Education
- Disease Management
- Performance Improvement Systems

Treat Comorbidities
- Aspirin*
- Warfarin*
- Statin*
Figure 1. Stages in the Development of Heart Failure/Recommended Therapy by Stage.

At Risk for Heart Failure

Stage A
At high risk for HF but without structural heart disease or symptoms of HF
- e.g., Patients with:
 - hypertension
 - atherosclerotic disease
 - diabetes
 - obesity
 - metabolic syndrome
- or Patients:
 - using cardiotoxic
 - with FHC CM

Stage B
Structural heart disease but without signs or symptoms of HF
- e.g., Patients with:
 - previous MI
 - LV remodeling including LVH and low EF
 - asymptomatic valvular disease

Stage C
Structural heart disease with prior or current symptoms of HF
- e.g., Patients with:
 - known structural heart disease
 - shortness of breath and fatigue, reduced exercise tolerance

Stage D
Refractory HF requiring specialized interventions
- e.g., Patients who have marked symptoms at rest despite maximal medical therapy (e.g., those who are recurrently hospitalized or cannot be safely discharged from the hospital without specialized interventions)

Goals
- Treat hypertension
- Encourage smoking cessation
- Treat lipid disorders
- Encourage regular exercise
- Discourage alcohol intake, illicit drug use
- Control metabolic syndrome

Drugs
- ACEI or ARB in appropriate patients (see full-text guideline) for vascular disease or diabetes

Devices in Selected Patients
- Implantable defibrillators

Goals
- All measures under Stage A
- Dietary salt restriction

Drugs for Routine Use
- Diuretics for fluid retention
- ACEI
- Beta-blockers

Drugs in Selected Patients
- Aldosterone antagonist
- ARBs
- Digitalis
- Hydralazine/nitrates

Devices in Selected Patients
- Biventricular pacing
- Implantable defibrillators

Goals
- Appropriate measures under Stages A, B, C
- Decision re: appropriate level of care

Options
- Compassionate end-of-life care/hospice
- Extraordinary measures
 - heart transplant
 - chronic inotropes
 - permanent mechanical support
 - experimental surgery or drugs

HF = heart failure; MI = myocardial infarction; LV = left ventricular; LVH = left ventricular hypertrophy; EF = ejection fraction; FHC CM = family history of cardiomyopathy; ACEI = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker.