Sports Cardiology In Endurance Athletes
AKOMA CME Conference
5-10-14 Anchorage AK

Christine E. Lawless, MD, MBA, FACC, FACSM, CAQSM
Founder, ACC Sports and Exercise Cardiology Council
President—Sports Cardiology Consultants LLC
University of Chicago
University of Nebraska

Outline
- Numbers of athletes are increasing
- Exercise physiology of endurance sports
- Interpreting cardiac tests in endurance athletes
- Risks of endurance sports
- How sports cardiologists minimize risk

Many Health Benefits of exercise for all ages
- Current United States (US) physical activity guidelines:
 - Healthy adults: 2.5 hours of moderate activity/wk
 - Children: 60 minutes of daily physical activity, with 20-30 minutes of vigorous activity 3 days per week for both age groups
- Ref: Swift, Fletcher, Thompson, Pate, Jansen, Thorpe and US DHHS website

Numbers of athletes in USA—INCREASING
- Participation doubled in all demographic groups over past 10 yrs
- Established heart disease: Living longer; may contemplate sports and exercise

Over age 35 years—drawn to endurance exercise
- Marathon finishers up from 353,000 in 2000 to over 500,000 in 2011
- USA Triathlon memberships up from 21,341 to more than 146,000 during the same period

Risks of exercise
- Paradoxically, despite its favorable effects on well-being and survival, exercise can acutely be associated with:
 - risk of myocardial infarction
 - aortic dissection
 - arrhythmias
 - Sudden cardiac arrest (SCA) and/or death (SCD)
Exercise physiology

Acute Exercise Response

\[VO_2 \text{max} = CO \times A-V O_2 \text{ diff} \]

\[VO_2 \text{max} = (HR \times SV) \times A-V O_2 \text{ diff} \]

Effects Exercise Training

\[\uparrow VO_2 \text{ max} \]

Primarily SV

Reduced HR

Any Part Equation can Reduce Performance

- Heart Rate
- Stroke Volume
- Arterial \(O_2\) Content
- Venous \(O_2\) Content

Cross country skiing: Lesson in sports cardiology, and evaluating an athlete

- CV Demands:
 - Endurance
 - Altitude (interaction w/ external athletic environment)
 - \(O_2\) desaturation - worse with altitude, as low as 80%
 - Use of both arms and legs

Cross country skiing: Lesson in sports cardiology, and evaluating an athlete

- CV Adaptations
 - \(VO_2\) max 87ml/kg/min (highest recorded 96ml/kg/min - B. Daehlie)
 - Max HR of 185 bpm
 - SV 200ml
 - CO 40 L/min
 - Up to 40% increases in all chamber measurements in ECHO/MRI
Interpreting cardiac tests

ECG findings/adaptation
Enhanced Parasympathetic Tone

- Resting Bradycardia
- Sinus Arrhythmia
- AV Conduction Delay
 1st, 2nd, 3rd
- Early Repolarization
- T Wave Changes

28 year old 2:17 marathoner - chest discomfort

16 year old miler

WPW Pattern is More Common in Endurance Athletes

- Large Venous Capacity
- High Vagal Tone
- Reduced Sympathetic Tone

Be Careful of + Tilt Tables in Athletes-Up to 66% can be positive

Huston NEJM 1985

Vaso-Vagal Syncope is More Common in Endurance Athletes
Cardiac Enlargement

- Global (LV, RV, LA, RA)
- Mild
- Marked Enlargement → Disease

The Limits of LV Cavity

- 1300 Elite Italian Athletes
- LVID Increased
 - 45% > 55 mm
 - 14% > 60 mm
- Largest LVID
 - Female = 66 mm
 - Male = 70 mm
- HR r = 0.37; BSA r = 0.76

Pelliccia Annals IM 1999

Distribution of Left Atrial Dimensions in 1,823 Elite Athletes

- 20% (≥40mm)
- 71% (≥45mm)

The Limits of Normal Wall Thickness

- 947 Italian Athletes
- 209 Women
- 16 Athletes LVWT > 12 mm
- Rowing + Canoeing - 7% of Those Athletes
 - 1 Athlete > 16 mm
 - All Women < 11 mm

Pelliccia NEJM 1991

Distribution of max. LV wall thickness in 738 male and 600 female elite athletes

(Pelliccia, NEJM 91 and JAMA 95)

Left Ventricular Ejection Fraction: ? Normal

Tour De France Cyclists - 11% have LVEF less than 52%
Weight lifting: Pressure overload

- LV cavity not increased
- Wall thickness not increased, but out of proportion to cavity dimension

Risks of exercise

- Paradoxically, despite its favorable effects on well-being and survival, exercise can acutely be associated with:
 - risk of myocardial infarction +/- SCA/SCD
 - aortic dissection
 - arrhythmias
 - Sudden cardiac arrest (SCA) and/or death (SCD)

How Dangerous Is Exercise For Healthy Adults?

1 Death/Year/Per

<table>
<thead>
<tr>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School 0.12</td>
<td>High School 0.66</td>
</tr>
<tr>
<td>College 0.28</td>
<td>College 1.45</td>
</tr>
</tbody>
</table>

(1 / 133,333 men & 1/769,230 women)

Van Camp 1995
Incidence and etiology of SCD in athletes

- SCD rare (Swiss Engadine Ski Marathon, 1:120,000 skiing hours)
- Swedish Vasaloppet racers showed more than 7 X greater risk of SCD acutely
- Over a 10 year period, standardized mortality ratios of 0.48 [95% confidence interval (CI) 0.44-0.53]
- Acute increase in SCD outweighed by long term benefit
- Higher incidence of atrial fibrillation

Medical perspective - XC skiing

Exercise Also Increases the Risk of Myocardial Infarction

Most MIs Are Caused by Lesions of Minimal Stenosis

Screening Exercise Tests

- May Be Falsely Positive
- Because of Left Ventricular Enlargement ??
- Can Be Dismissed if Good Exercise Tolerance, No Symptoms, Good Heart Rate Response, Rapid Resolution in Recovery
- Nuclear Imaging May Show Inferior Defect
- Due to Large Hearts & Diaphragmatic Attenuation ??
Screening Exercise Tests

Are Not Good Predictors of Sudden Death or Acute MI in Asymptomatic Individuals

Exercise Testing for Asymptomatic Persons Without Known CAD

- Class 2 - Conflict or Divergence of Opinion
- Evidence/Opinion Favors - Diabetes Pre Vigorous Exercise
- Usefulness Less Established - Men >45, Women >55 Pre Vigorous Exercise

Exercise Advice?

- 36th Bethesda Conference 2005 Determining Athletic Eligibility in Athletes with Heart Disease Are Very Restrictive
- Prohibit Competitive Athletics with High Risk Lesions (CAD, HCM, Marfan)
- Flexibility Depending on the Perceived Risk For the Athlete…but
- The "I Gotta Sleep Too Rule"

The Most Frequent Problem

- High Powered, Exercise – Addicted Lawyers, Bankers, Stock Brokers
- Wanting to Return to Climbing, Competition, Whatever
- After an ACS

Typical baby boomer athlete

- Born post WWII between 1946 and 1964
- A weekend warrior
- Or, an athlete who resumes sports after years of no training or the athlete who starts a sport late in life

Return to previous activity after event???

- 60 y/o male attending cardiac rehab after CX stent for MI
- Asymptomatic, MVO2 32.4ml/kg/min, max HR 134 bpm (10:15 min Bruce protocol)
- LVET 52%, nuclear stress- small fixed defect lateral wall, no evidence of reversible ischemia
- His question: Is it OK to return to competitive open wheel race car driving at 145mph?
Patient Information

- 21-year-old male
- Six years prior – diagnosed with mild aortic insufficiency
- Otherwise a healthy individual.
- No history of:
 - Hypertension
 - Diabetes
 - Dyslipidemia
 - COPD
 - Smoking
- Weight: 201 lb (91 kg), Height: 72 in (184 cm)

Clinical Presentation

In June, 1999:

- Presented to an outside institution with acute severe substernal chest pain with shortness of breath
- The pain developed during strenuous exercise (lifting weights)

Weight Lifting Exercise

- Weightlifter
- Exercises daily
- Primarily anaerobic exercise
- Lifts up to 75-100% of body weight

Computed Tomography

- Dilated ascending aorta from the sinuses to the proximal arch,
- Maximal size 5.2 cm
- Aortic dissection was suspected, but a clear dissection flap was not visible
Transesophageal Echocardiography

- Dilatation of the ascending aorta from the sinuses to the proximal arch
- Maximal size 5.3 cm
- Bicuspid aortic valve
- Moderate aortic insufficiency, no stenosis
- Normal left ventricular ejection fraction
- Fluid in the pericardium
- No signs of aortic dissection

Intraoperative findings

- Bloody fluid in the pericardium – moderate amount (no hemodynamic effect)
- Ascending aorta appeared severely dilated
- Tubular type aneurysm
- Severe ecchymosis in the wall of the aorta
- Upon entry of the aorta – a large stellate laceration (3 cm) of the internal surface of the aorta was found in the right lateral location.

Evidence of Intramural Hematoma of the Ascending Aorta

Intramural Hematoma

Surgical procedure

- Composite graft replacement of the ascending aorta, aortic valve, and hemiarch on cardiopulmonary bypass and deep hypothermic circulatory arrest

- Cardiopulmonary bypass time – 174 min
- Aortic cross-clamp time – 108 min
- DHCA time at 18 degrees Celsius – 31 min

Postoperative Course

- Early:
 - Benign, diuresing well, hemodynamically stable.
 - No atrial fibrillation
 - Discharged home on 5th postoperative day
- Late:
 - 15 years postoperatively the patient is doing well
 - Continues physical training and weight lifting

Patient wants to return to weightlifting

- What advice to give to patient?
 - Restrict anaerobic physical exercise to less than 50% of body weight.
 - Allow complete return to preoperative levels of physical activity.
 - Allow complete return to preoperative levels of physical activity and screen the size of arch/descending/thoracoabdominal aorta.
Five years postoperatively

Outline

- Numbers of athletes are increasing
- Exercise physiology of endurance sports
- Interpreting cardiac tests in endurance athletes
- Risks of endurance sports
- How sports cardiologists minimize risk

Thanks to Dr. Paul Thompson (Hartford Hospital, CT) for use of some slides

Thank you!