Update in Novel Therapies for Hereditary Angioedema

Eric A Meier MD, FAAAAI, FACAAI, FACP
Allergy, Asthma and Immunology
Center of Alaska
May 17th 2013

Disclosures

• Speakers Bureau
 – Teva

History

• 1882–Quincke described angioneurotic edema
• William Osler 1888—“hereditary angioneurotic edema”
• 1917–Autosomal dominant inheritance pattern discovered
• 1963–biochemically defined as deficiency in C1 esterase inhibitor by Donaldson and Evans
• 1972–acquired form first described
Epidemiology

- Prevalence 1:50,000
- Described in all races
- No sex predominance
- Autosomal dominant inheritance

Presentation

- Usually presents in second decade and may worsen in adolescence. Rarely occurs 6th-7th decade
- Angioedema (involves inner dermis and subcutaneous tissues) without urticaria
- Painless nonpruritic, nonpitting edema involving face, upper airway, GI tract, and extremities
- Onset within hours and duration 2-5 days
- Upper airway (hoarseness, dysphagia) involvement has mortality of 30-40% in some series
- Hypotension may rarely occur due to fluid shifts
Upper Respiratory Tract

- Laryngeal, pharyngeal, and nasal angioedema can lead to asphyxiation
- Asphyxiation can occur as early as 20 min or as late as 14 hours
- Asphyxiation can occur at any age
- Study showed 5 of 6 patients who asphyxiated never had upper airway involvement in previous attacks

Gastrointestinal

- Visceral edema results in obstructive symptoms including anorexia, vomiting, and crampy abdominal pain
- Ascites may rarely occur
- Severe isolated abdominal symptoms without cutaneous angioedema can be mistaken for acute abdomen leading to unnecessary exploratory surgery
- Usually resolves in 12 to 24 hours

Presentation--other

- Fever and leukocytosis should raise suspicion for another cause of angioedema
- Rarely may have erythematous rash that unlike urticaria is not pruritic, painful, or warm
- Genital swelling can occur with horseback riding, parturition, or intercourse
- Cases reported of migraine-like and TIA-like symptoms during attacks
Triggers

- Minor trauma
 - Dental most common
 - Even writing/typing
- Stress
- Menses or use of OCP’s
- Infection
- Often no precipitating factors identified

C1 Esterase Inhibitor (C1EI)

- Belongs to serine protease inhibitor family and located on chromosome 11 (11q12-q13.1)
- Molecular weight of 105kd
- Produced in liver, monocytes, megakaryocytes, fibroblasts, and placental cells
- Synthesis stimulated by INF gamma
- Biologic half life 64 hours

C1 esterase inhibitor (C1EI)--functions

- C1EI has modulating effect on complement, fibrinolytic, and kinin pathways
- Inactivates C1r, C1s, XIIa, kallikrein, and plasmin by forming irreversible covalent bonds with these substrates
- Inhibits auto-activation of C1q in fluid phase
Classification

- Hereditary (HAE)
 - Hereditary Angioedema Type I--85%
 - Low C1EI level (<30% of normal)
 - Hereditary Angioedema Type II--15%
 - Abnormal functional assay but normal quantitative level
 - Type III--described in women only
- Acquired (AAE)
 - Acquired deficiency Type I
 - Acquired deficiency Type II

Genetic Mutations of C1EI

- Autosomal dominant inheritance pattern
 - 20-25% may have spontaneous mutations
- Over 100 mutations have been described which explain the widely variable clinical differences
- Type I HAE may be due to insertions or deletions of nucleic acids of the C1EI gene
- 70% of Type II mutations result in substitutions at Arg444

Type III HAE

- Described in German study (Lancet 2000;356:213-217)
- Estrogen Associated/Dependent
- Inherited
- Associated with puberty, pregnancy, OCP use or HRT
- Symptoms noted within 14 to 21 days of conception or within 7-14 days of starting estrogen therapy
- Normal C1 inhibitor levels and function
Type I Acquired Angioedema (AAE)
- Described 1960’s
- Presents after 4th decade of life
- Synthesis of inhibitor is normal but rate of catabolism of these agents is increased 2 fold
- C1 is thought to be continuously activated which leads to consumption of C1EI

Type I Acquired Angioedema (AAE)
- Seen in B cell proliferative disorders, MM, WM, essential cryoglobulinemia, and lymphocytic lymphoma
- Rarely other carcinomas, SLE, Churg-Strauss, infections, and livedo reticularis
- Angioedema may precede development of malignancy by years

Type II Acquired C1I Deficiency
- Autoantibody (IgG or IgA) directed against C1EI molecule leading to its inactivation
- An inactive C1EI is cleaved into 96 kd fragment that can be measured in the serum leading to “normal” C1EI measured level
- No known underlying disease
- Nonfunctional C1 Inhibitor
- C1 antigenic level 50-60% of normal
Diagnosis

- Presentation and inheritance pattern
- Search for complement abnormalities
 - CH50 may be low
 - C4 level should be low in between attacks but can rarely be normal
 - C4 and C2 are low during attacks
 - C1 inhibitor level low in Type I HAE (<30% less than normal)
 - C1 functional assay abnormal in Type II HAE
 - Distinguishing feature of AAE is low C1q level as opposed to HAE

Diagnosis

- Screening test of choice C4 advocated by most authors
- Measure C1EI level and function and C1q
- HAE type 1—decreased C1EI level and normal C1q level
- HAE type 2—decreased C1EI function and normal C1q level
- AAE—decreased C1EI function and C1q level

Complement Profiles in Angioedema

<table>
<thead>
<tr>
<th>Condition</th>
<th>C1-INH Quantitative</th>
<th>C1-INH Activity</th>
<th>C3</th>
<th>C4</th>
<th>C1q</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAE Type 1</td>
<td>Low</td>
<td>Low</td>
<td>nl</td>
<td>Low</td>
<td>nl</td>
</tr>
<tr>
<td>HAE Type 2</td>
<td>nl or high</td>
<td>Low</td>
<td>nl</td>
<td>Low</td>
<td>nl</td>
</tr>
<tr>
<td>HAE Type 3</td>
<td>nl or high</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
</tr>
<tr>
<td>AAE Type 1</td>
<td>Low</td>
<td>Low</td>
<td>nl</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>AAE Type 2</td>
<td>nl or high</td>
<td>Low</td>
<td>nl</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Allergic AE</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
<td>nl</td>
</tr>
</tbody>
</table>
Treatment

- Acute
- Chronic Prophylaxis
 - Short term
 - Long term

Acute Treatment

- C1-INH Concentrate
- Plasma Kallikrein Inhibitor
- Bradykinin Receptor Antagonist
- FFP
 - Paradoxical worsening may occur
 - Not recommended for severe attacks
- Supportive therapy during acute attacks until symptoms resolve
 - Airway management
 - Pain management, opioids often required
 - Anti-emetics for nausea/vomiting
 - IVF
- Corticosteroids, antihistamines and epinephrine provide little benefit in most reports

Chronic Treatment

- Genetic counseling and testing of relatives and offspring
- C1-INH Concentrate
- Attenuated androgens
 - Danazol
 - Stanazolol
- Antifibrinolytic agents
 - Epsilon aminocaproic acid
 - Tranexamic acid
Attenuated Androgens

- Decrease attacks by increasing C1 inhibitor production
- Stanozolol 4 mg TID for 12 wks
 - Taper by 2-4 mg every 12 wks until lowest maintenance dose is reached
 - Typically 2-6 mg/day
 - Alternative is to taper as soon as control is reached
 - Alternate day is also effective
- Danazol 200-300 mg qd
 - 200-300mg every 2-3 days has been successful

Androgen Contraindications

Absolute contraindications
- Hepatic, renal, cardiac disorders
- Pregnancy or breast feeding
- Prostate cancer
- Porphyria

Relative contraindications
- Elevated LFT's
- Studies have shown LFT's remain stable even in patients with baseline elevated enzymes

Androgen Side Effects

Side effects are dose related
- Weight gain, hirsutism, hair loss, voice changes, abnl menstruation, decreased breast size, decreased libido, HA's, acne, myalgias, abnl lipid panel, polycythemia, elevated LFT's, hepatic necrosis, cholestasis, HTN, possibly increased atherogenesis
- Hepatocellular adenomas and one case of hepatocellular carcinomas in pts taking danazol > 10 yrs
- Stanozolol seems to have fewer adverse effects than danazol
Antifibrinolytic Agents

- Decrease conversion of plasminogen to plasmin and fibrinolysis

- Epsilon aminocaproic acid
 - Dose: 2 g TID
 - Not FDA approved for HAE

- Tranexamic acid
 - Dose: 1 g BID
 - Not FDA approved for HAE

Antifibrinolytic Agents

- Side effects
 - Nausea and diarrhea
 - Vertigo
 - Postural hypotension
 - Fatigue and muscle cramps/weakness
 - Increased muscle enzyme concentrations

- Other concerns
 - Risk of vascular thrombosis
 - Teratogenicity

New Treatment Options for HAE
Treatment - C1 Inhibitors

- C1 inhibitor isolated from plasma:
 - American Red Cross began to make experimental batches in 1974
 - Gadek, et.al. reported effectiveness in NEJM in 1980
 - Became available in Europe in the early 1980’s
 - With the onset of the AIDS epidemic preparation was halted in the US
 - Since then several generations of C1 inhibitors have been developed

Treatment - C1 Inhibitors

- 1st Generation
 - Physical separation
 - Risk of viral transmission - HIV and HCV
- 2nd Generation
 - Added dry heat treatment
 - Removed risk for HIV but not HCV
- 3rd Generation
 - Added pasteurization
 - Removed risk of both HIV and HCV transmission
- 4th Generation
 - Added nanofiltration
 - Virtually no risk

Treatment - C1 Inhibitors

- Now FDA approved, but have been used in Europe for many years
- Extensive reports by Bork and colleagues
 - Improvement in laryngeal attacks in close to 100% of patients within 60 minutes
 - 70% of patients with abdominal attacks improved at 60 minutes, and close to 100% improved by two hours

Bork et al. Transfusion. 2005;45(11)
Treatment - C1 Inhibitors

- Two C1 inhibitor preparations purified from pooled human plasma are available
 - Human C1 esterase inhibitor – Berinert
 - Human C1 esterase inhibitor – Cinryze

Berinert

- Pasteurized
- FDA approved for acute therapy of attacks
- First licensed in Germany in 1979
- Approved in Europe since early 1980s

Berinert

- Safety and efficacy not studied for prophylaxis
- Phase III DBPC study in US: Craig et al. JACI. 2009;124(4)
- 125 patients with acute facial or abdominal HAE
- Primary endpoint was time to onset of relief
 - Moderate attacks
 - Median time to symptom relief was 48 minutes compared with 78 minutes with placebo
 - Severe attacks
 - Median time to symptom relief was 30 minutes compared with 810 minutes with placebo.
Berinert

- Over 400,000 treatments in Europe and other countries
- Approved in US for adults and adolescents
 - Safety and efficacy for ages 0-12 not established
- 20 units per kg IV

Berinert

- Warnings include:
 - Hypersensitivity
 - Thrombotic events
 - Transmission of infectious agents
 - No infections have been observed in decades of use
- Adverse reactions:
 - HA, abdominal pain, nausea, muscle spasm, pain, diarrhea and vomiting

Cinryze

- First batches made as early as 1972
- Pasteurized and nanofiltered
- FDA approved for prophylaxis
- Not approved for acute attacks
Cinryze

- Phase III DBPC study in US: Zuraw et al. NEJM. 2010;124(4)
- 22 patients with 2 or more attacks per month
- Reduced attacks by half

- Cinryze is FDA approved for prophylaxis in adolescents and adults
- 1000 units twice a week

Cinryze

- Warnings include:
 - Hypersensitivity
 - Thrombotic events
 - Transmission of infectious agents
- Adverse reactions:
 - URI, sinusitis, rash and HA

Treatment - C1 Inhibitors

- Recombinant transgenic human C1 inhibitor
- Conestat alfa - Ruconest (EU), Rhucin (US) is for the treatment of acute HAE attacks in adults
 - >90% of patients respond within 4 hours
 - Expressed in rabbit milk and then purified
 - Dose: IV 50 or 100 U/kg, shorter half life
- 2 randomized DBPC studies showed rapid improvement
 - European Study (50) and North American Study (50 and 100)
 - Launched in Europe; phase III clinical trials in the US
- Safety
 - The most common adverse event in these studies was headache
 - Contraindicated in patients with rabbit allergy or with IgE antibodies against rabbit epithelium (dander)
Treatment – Drugs Targeting Bradykinin Forming Cascade

• Bradykinin is the mediator of swelling
• Ecallantide (Kalbitor)
 – Plasma Kallikrein Inhibitor
• SQ administration: 30mg (3mL): 3 1mL injections
• Short half life: ~2 hours
• 2 DBPC Phase III studies in the US showed significant improvement vs placebo (N=168)
• FDA approved for acute attacks

Warning:
 – Anaphylaxis in 2.7% to 3.9% of patients
 – Always within the first hour
 – Should only be administered by a healthcare professional with appropriate medical support to manage anaphylaxis

Treatment – Drugs Targeting Bradykinin Forming Cascade

• Icatibant (Firazyr)
 – 2nd generation bradykinin B2-receptor antagonist
 – SQ administration
 – Short half life: ~1-2 hours
 – 3 DBPC Phase III studies in US and Europe
 – Europe/Israel trial (FAST-2) – significant decrease in time to relief
 – US trial (FAST-1) showed no benefit; follow-up (FAST-3) trial recently completed and showed significant benefit for icatibant
 – Approved in Europe and in the US the drug was granted FDA approval on August 25, 2011
Conclusion

Bradykinin receptor antagonist
Kallikrein inhibitor