

Prevention, Management and Diagnosis of Diabetes

Alex Gonzalez Bossolo, MD ECNU, FACP

- Diplomate of the American board of Internal Medicine (ABIM)
- Diplomate ABIM, Endocrinology, Diabetes and Metabolism
- Diplomate of the American Board Clinical Lipidology
- Endocrine Certified Neck Ultrasound
- March 27, 2021

Disclosure

Industry Relationship	Company Name	Role				
Advisor/Consultant	Merck Medtronic	Consultant/Speaker				
Industry Research	Eli-Lilly Enanta Pharmaceuticals	PI / Sub-PI Sub-PI				

Objectives

Know the prevalence of T2DM in Puerto Rico

Review the screening methods for diagnosis prediabetes and diabetes

Review the current recommendations and standards of care for the management of Prediabetes

Review the current recommendations and standards of care for the management of type 2 diabetes.

Lipids management in primary and secondary prevention of cardiovascular disease in patients with diabetes.

Review recent advances in the therapeutic options available for glycemic control including it's cardiovascular risk reduction

Question 1

- ♦ A 45-year-old Hispanic without medical history comes to the office for evaluation. Her only medication is a multivitamin. She does not a have a family history of type 2 diabetes.
- ♦ Physical examination

♦ BMI: 26

♦ BP: 125/82 mmHg

In addition to lifestyle modifications, which is of the following is the next best step management regarding diabetes risk.

- ♦ A. Perform screening now
- ♦ B. Perform screening in 2 years
- ♦ C. No need to perform Diabetes screening.
- D. Perform screening if starts symptoms such as polyuria, polydipsia and polyphagia.

Table 2.3—Criteria for testing for diabetes or prediabetes in asymptomatic adults

- Testing should be considered in overweight or obese (BMI ≥25 kg/m² or ≥23 kg/m² in Asian Americans) adults who have one or more of the following risk factors:
 - First-degree relative with diabetes
 - High-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific Islander)
 - History of CVD
 - Hypertension (≥140/90 mmHg or on therapy for hypertension)
 - HDL cholesterol level <35 mg/dL (0.90 mmol/L) and/or a triglyceride level >250 mg/dL (2.82 mmol/L)
 - Women with polycystic ovary syndrome
 - Physical inactivity
 - Other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)
- Patients with prediabetes (A1C ≥5.7% [39 mmol/mol], IGT, or IFG) should be tested yearly.
- Women who were diagnosed with GDM should have lifelong testing at least every 3 years.
- For all other patients, testing should begin at age 45 years.
- If results are normal, testing should be repeated at a minimum of 3-year intervals, with consideration of more frequent testing depending on initial results and risk status.

Criteria for the Diagnosis of Diabetes

Fasting plasma glucose (FPG) ≥126 mg/dL (7.0 mmol/L)

OR

2-h plasma glucose ≥200 mg/dL (11.1 mmol/L) during an OGTT

OR

A1C ≥6.5%

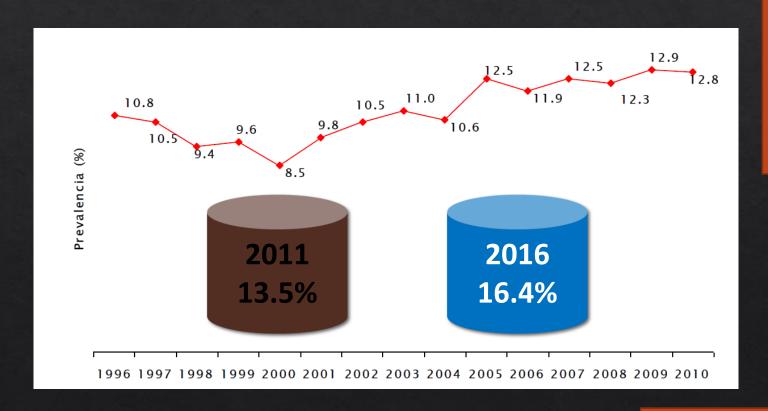
OR

Random plasma glucose ≥200 mg/dL (11.1 mmol/L) Prediabetes*

FPG 100-125 | IMPAIRED FASTING GLUCOSE (5.6-6.9 mmol/L). IFG

OR

2-h plasma glucose 140–199 mg/dL (7.8–11.0 mmol // N. T.C.T. IMPAIRED GLUCOSE OR TOLERANCE


A1C 5.7-6.4%

* For all three tests, risk is continuous, extending below the lower limit of a range and becoming disproportionately greater at higher ends of the

range.

American Diabetes Association Standards of Medical Care in Diabetes. Classification and diagnosis of diabetes. *Diabetes Care* 2019; 42 (Suppl. 1): S13-S28

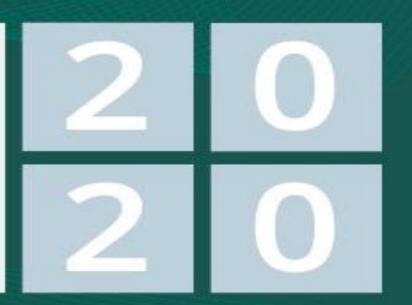
PREVALENCIA DE DIABETES EN PUERTO RICO, BRFSS, 1996-2010

2020 :16.8%

Diabetes Care

AMERICAN DIABETES ASSOCIATION

STANDARDS OF MEDICAL CARE IN DIABETES-2021



Standards of Medical Care in Diabetes - 2021

AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS
AMERICAN COLLEGE OF ENDOCRINOLOGY

TYPE 2 DIABETES MANAGEMENT ALGORITHM

Classification of Diabetes

- Type 1 diabetes
 - β-cell destruction
- Type 2 diabetes
 - Progressive insulin secretory defect
- Gestational Diabetes Mellitus (GDM)

Other specific types of diabetes due to other causes:

- Monogenic diabetes syndromes
- Diseases of the exocrine pancreas (cystic fibrosis)
- Drug- or chemical-induced diabetes

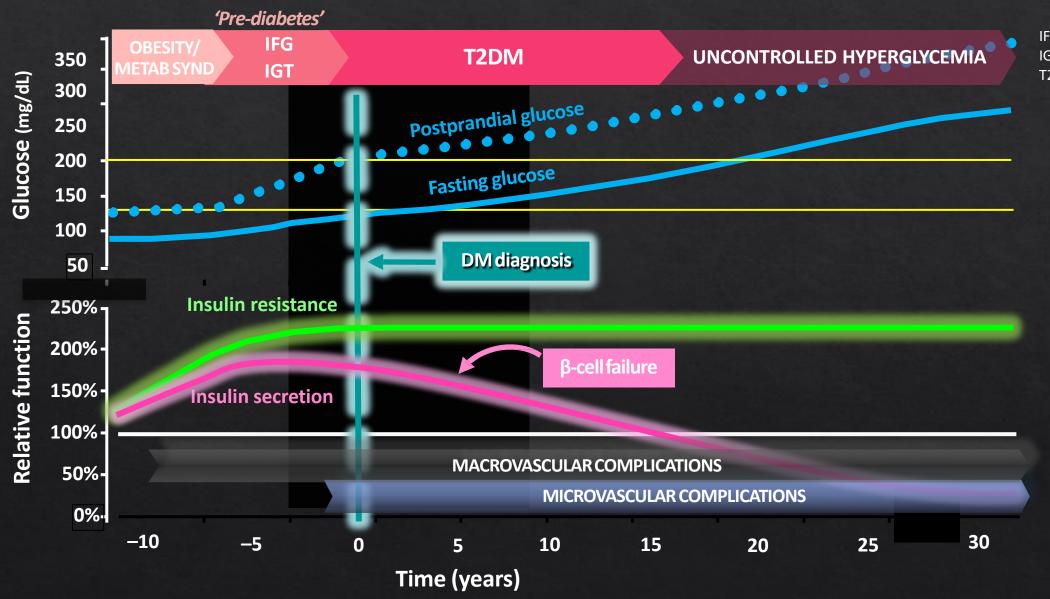
Question 2

A 39-year-old obese man is referred after a fingerstick blood glucose measurement at a health screening fair at work was documented to be 115 mg/dL (9.9 mmol/L). He had recently eaten lunch. His medical history is notable for dyslipidemia that is well controlled on simvastatin, gout, and obesity.

On physical examination, his blood pressure is 132/78 mm Hg and his BMI is 41.5 kg/m2. Acanthosis nigricans is present, but there are no other notable findings on physical examination.


You reassess his glycemic status:

- Fasting plasma glucose (laboratory) = 119 mg/dL (70-99 mg/dL) (SI: 6.6 mmol/L [3.9-5.5 mmol/L])
- Hemoglobin A1c = 6.3% (4.0%-5.6%) (SI: 49 mmol/mol [20-38 mmol/mol])

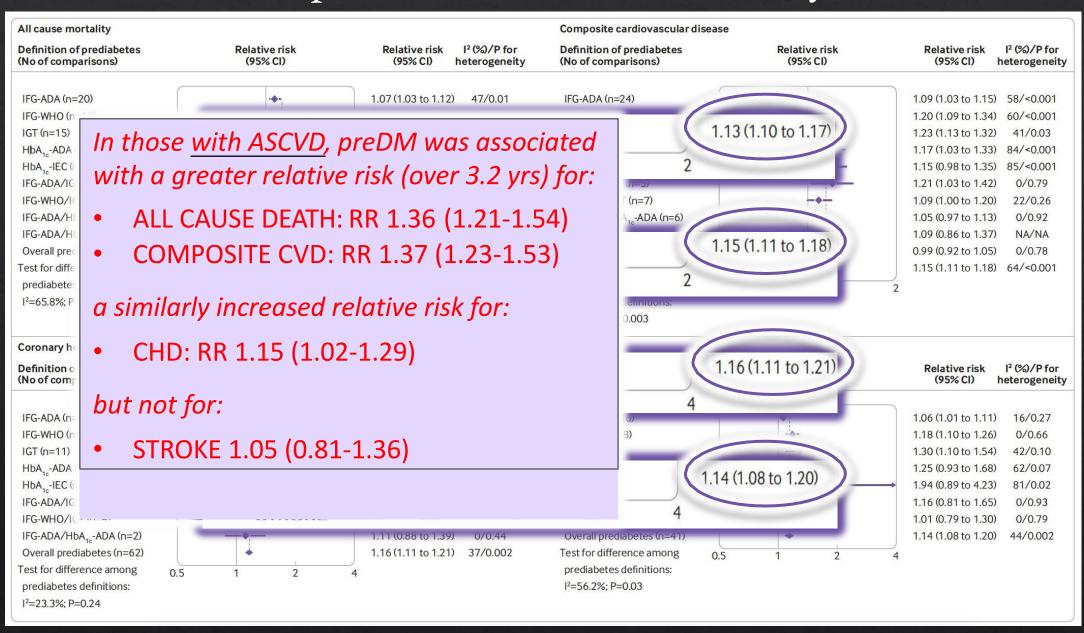

What is the next best step of management

- A. Lifestyle Modifications with target of 7% weight loss
- ♦ B. Start Metfomin 500 mg once daily
- ♦ C. Start dapagliflozin 10 mg once daily
- ♦ D. None of the above

Progression to Type 2 Diabetes

Pathophysiologic Progression of Type 2 Diabetes and Its Vascular Complications

IFG = impaired fas?ng glucose IGT = impaired glucose tolerance T2DM = type 2 diabetes mellitus


> Adapted from: Ramlo-Halsted BA et al. *Clin Diabetes* 2000;18:80-84

Association between preDM & all cause mortality and CVD

Studies: 129

People: 10,069,955

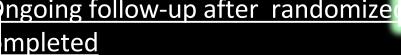
Follow-up: 9.8 yrs

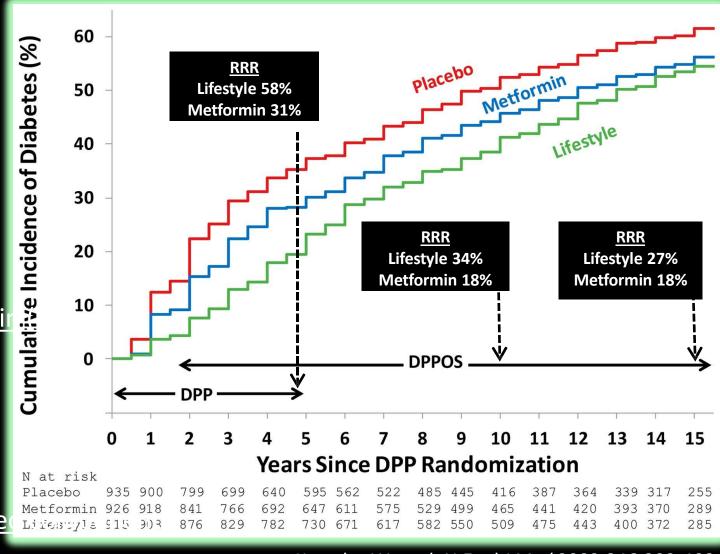
T2DM Doubles the Risk for Macrovascular Outcomes Meta-Analysis of 102 Prospective Studies¹

	Number of Cases		HR (95% CI)	<i>I</i> ² (95% CI)
Coronary heart disease ^a Coronary death Nonfatal MI	26,505 11,556 14,741		2.00 (1.83-2.19) 2.31 (2.05-2.60) 1.82 (1.64-2.03)	64 (54-71) 41 (24-54) 37 (19-51)
Stroke subtypesa Ischemic stroke Hemorrhagic stroke Unclassified stroke	3,799 1,183 4,973		2.27 (1.95-2.56) 1.56 (1.19-2.05) 1.84 (1.59-2.13)	1 (0-20) 0 (0-26) 33 (12-48)
Other vascular deaths	3,826	1 2	1.73 (1.51-1.98) 4	0 (0-26)

^a Includes both fatal and nonfatal events. Emerging Risk Factors Collaboration. *Lancet*. 2010;375:2215-22

Trial	Year	N	Subjects	Intervention	Duration	RRR
Da Qing	1997	577	IGT	Lifestyle	~6 years	32%
Finnish DPS	2001	522	IGT	Lifestyle	3.2 years	58%
US DPP	2002	3234	IGT	Lifestyle	2.8 years	58%
US DPP	2002	3234	IGT	Metformin (biguanide)	2.8 years	31%
STOP NIDDM	2002	1418	IGT	Acarbose (AGI)	3.3 years	25%
XENDOS	2004	3305	IGT	Orlistat (lipase inhibitor)	~4 years	37 %
DREAM	2006	5269	IGT/IFG	Rosiglitazone (TZD)	3.0 years	62 %
NAVIGATOR	2010	9031	IGT + high CV risk	Nateglinide (meglitinide)	5.0 years	NS
ACT NOW	2011	602	IGT	Pioglitazone (TZD)	2.4 years	72 %
ORIGIN*	2012	1456	IGT + high CV risk	Glargine (basal insulin)	6.2 years	20%
CONQUER*	2014	866	Pre-DM / MetS	Phentermine/Topiramate	~2 years	79 %
IRIS*	2016	3876	Stroke + insulin resistance	Pioglitazone (TZD)	4.8 years	52 %
SCALE	2017	2254	Obesity + prediabetes	Liraglutide (GLP-1 RA)	~3 years	79%
CAMELLIA*	2018	12,000	Overweight + high CV risk	Lorcaserin (serotonergic)	3.3 years	19%


^{*} Not primary outcome

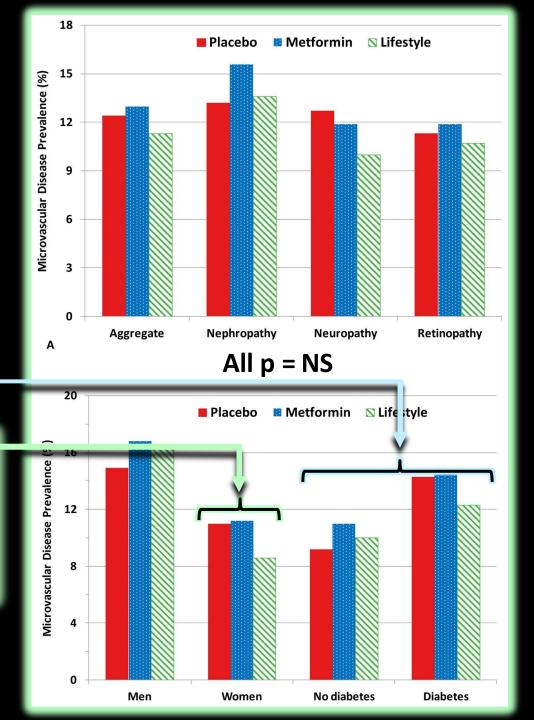

Long-term follow-up of the DPP participants: DPP-OS

- 1996-2001
- 3234 persons with preDM (IGT + FPG >95)
- Interventions: Lifestyle change (7% body wt loss, 150 min exercise/wk) vs. metformi mg BID), vs. placebo
- 2.8 yrs follow-up
- mean age, 51 yrs
- mean BMI, 34

OUTCOMES STUDY

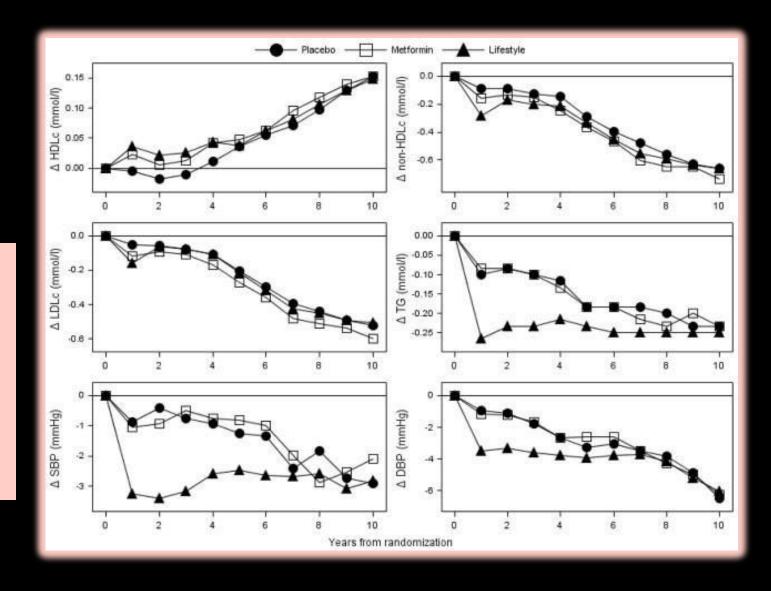
- 45% minority groups

Knowler W et al. N Engl J Med 2002;346:393-403 DPP Research Group. *Lancet* 2009;374:1677-86 DPP Research Group. Lancet Diabetes Endocrinol 2015;3:86-75


Long-term follow-up of the DPP participants: DPP-OS

Microvascular outcomes

Participants who did <u>not</u> develop T2D during DPP/DPPOS had a 28% lower (RR 0.72, p=0.01) aggregate microvascular disease prevalence than those who did develop T2D - for all treatment groups combined.


In women, the prevalence of aggregate microvascular outcome was 22% lower (RR 0.78, p=0.02) lower in the lifestyle group vs. metformin and 21% lower (RR 0.79, p=0.03) vs. placebo.

Long-term (10-years) follow-up of the DPP participants: DPP-OS

- Macrovascular outcomes
- Major improvements in SBP (↓ 2-3 mmHg) and DBP (↓ 5-6 mmHg) for LDL-C (↓ 18-21 mg/dl), HDL-C (↑ 5-6 mg/dl), and TGs (↓ 16-28 mg/dl) in all groups, with no between-group differences.
- Lipid (P < 0.012) and BP (P < 0.09) med use, however, was lower for the lifestyle group during DPP-OS.

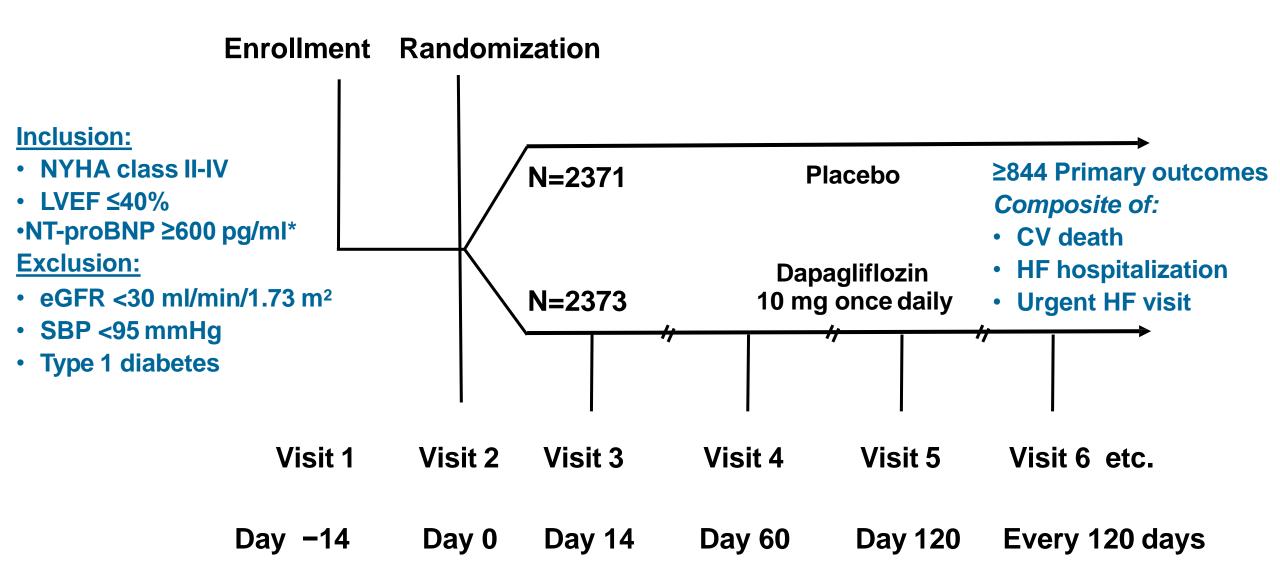
Long-term (10-years)

follow-up parMcipar

Macrovo

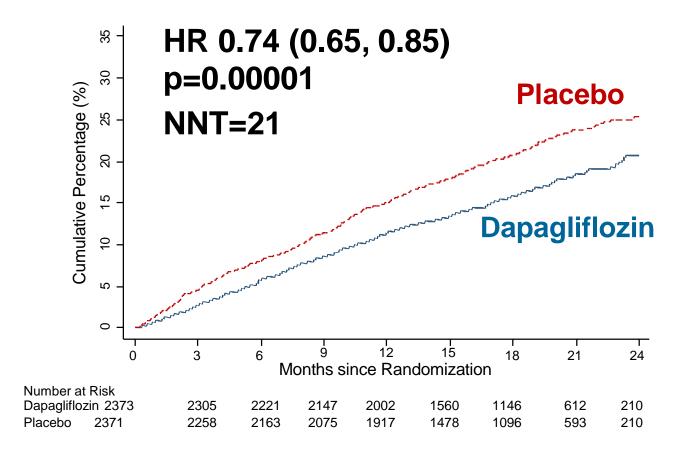
New Data from DPP-OS Shows Persistent Reduction of T2D Development Over 22-Year Average Follow-Up

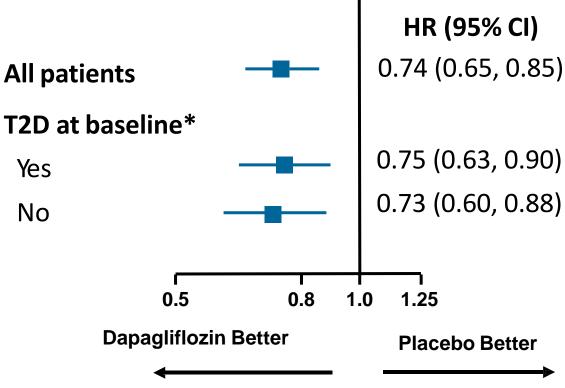
- Prevention effects in original lifestyle group and metformin groups remain after 22 years: 25% & 18% ↓ risk of T2D, respectively, vs. placebo.
- Those who did not develop T2D had a significant 57% and 37% \checkmark risk of retinopathy and nephropathy, respectively.


MACE.

- Despite the benefits seen with DM prevention overall, no significant benefit seen with the <u>individual interventions</u> outcomes
- However, there were favorable trends with metformin in stroke reduction and for MACE in the subgroup of people before age 45.

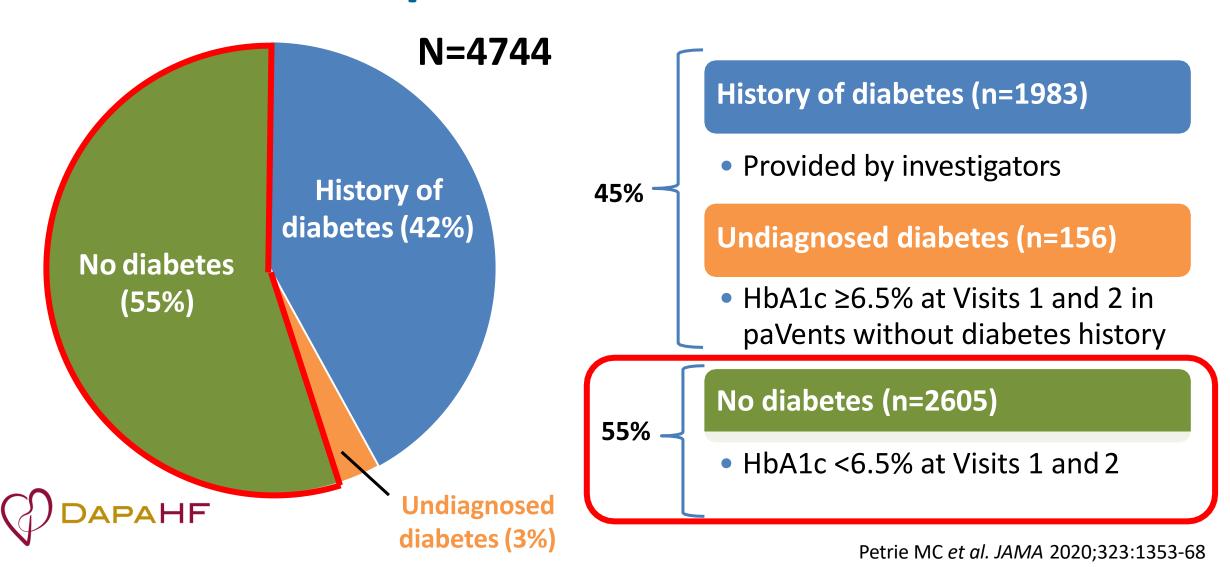
Nathan DM. 80th Scientific Sessions of the ADA, June 2020


DAPA-HF Design

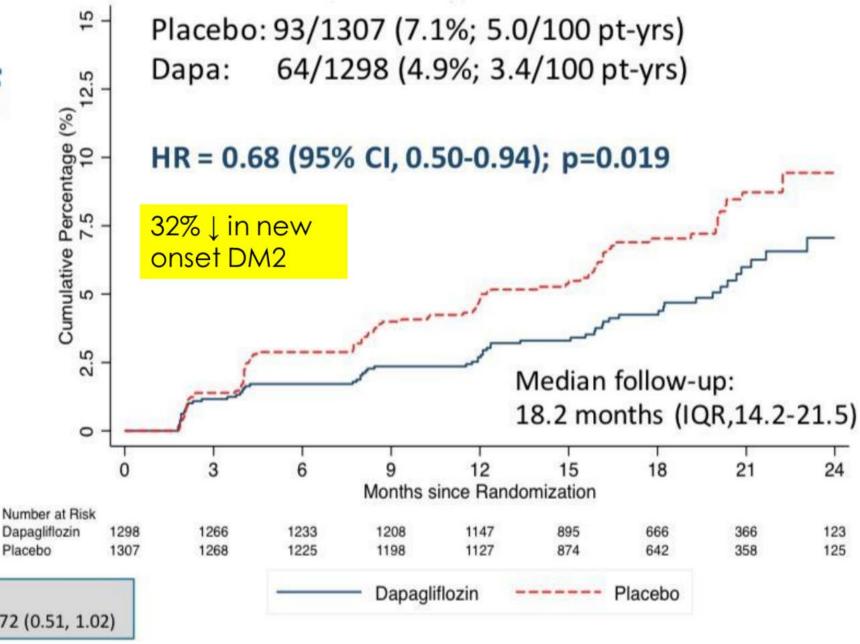

^{*≥400} pg/ml if HF hospitalization within ≤12 months; ≥900 pg/ml if atrial fibrillation/flutter

Dapagliflozin reduced worsening HF or CV death in patients with HFrEF

CV Death/HF hospitalization/Urgent HF visit



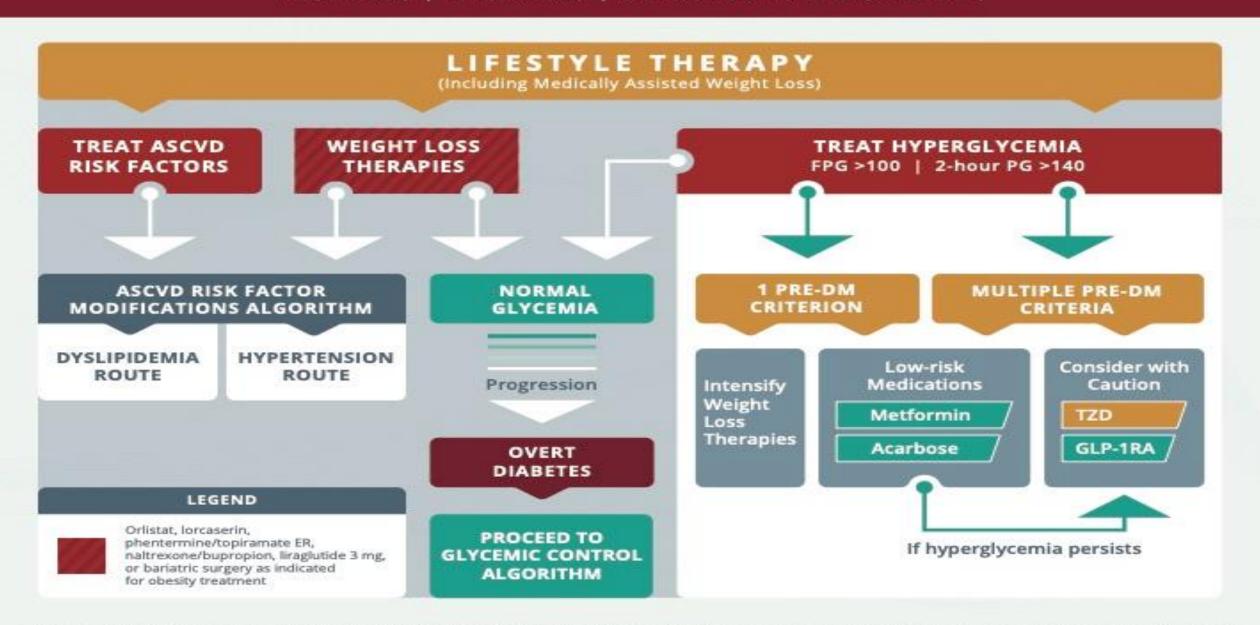
Similar benefit in patients with and without T2DM



*Defined as history of type 2 diabetes or HbA1c ≥6.5% at both enrolment and randomization visits.

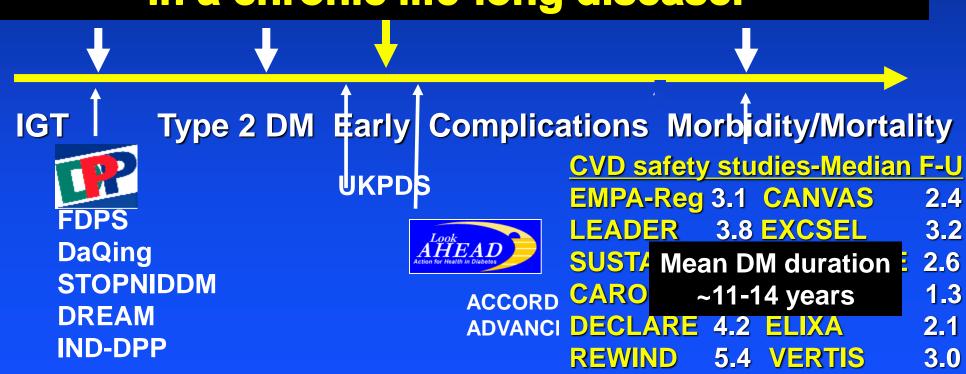
Distribution of Patients by Glycemic Statu HFrEF Population

Results: Incidence of new onset T2D in dapa vs. placebo groups



Fine & Gray: HR 0.69 (0.50-0.95)

LR adjusted for baseline HbA1c: OR 0.72 (0.51, 1.02)


PREDIABETES ALGORITHM

IFG (100-125) | IGT (140-199) | METABOLIC SYNDROME (NCEP 2001)

Type 2 Diabetes- a Chronic Degenerative Disease: Potential for Intervention

Most trials have captured brief vignettes in a chronic life-long disease.

Metabolic Goals: Microvascular Benefits

Reduction in microvascular complications roughly proportional to A1c reduction.

Relationship between Glycemia and Microvascular Complications

DCCT (Type 1) and UKPDS (Type 2)

250

400/ we describe to state

Although lower is better for microvascular complications in both type 1 and 2 diabetes, A1c of 7% was selected as the target as:

- 1) 7% was the A1c achieved in DCCT and UKPDS;
- 2) Absolute risks for complications quite low at HbA1c under 7%;
- 3) Balances benefits, risks and costs.

Scope of the Problem: Therapeutic Inertia

١.									. Madian Tima ta Aat
	First author, year	Country	Study period	N*	Index treatment	TI (addition to index treatment)	Patients who received TI, %†	HbA1c threshold‡	Median Time to Act (vears)
							64	≥7.0%	1.2 (years)
							Not reported	7.0-7.0%	1.6

Summary of Scope of Problem

- Not all patients with type 2 reach appropriate metabolic goals
- Clinicians are slow to change therapy

							78	≥7.5%″		1	1.2				
							48	≥7.0%			2.0	Ħ			
Lin, 2	2015 ⁴³	USA	2007–2012	79,805	≥1 OAD	OAD or injectable	50	Variable ¹			1.9#	:			
							50	Variable*			1.9#	:			
Ajmera	a, 2015 ¹⁸	USA	2007-2012	16,653	2 OADs	OAD or insulin	49	≥8.0%		1.5**					
Rubino	0, 200754	UK	2000–2006	2,501	≥2 OADs	Insulin	34	≥8.0%		4.9			4.9**		
Hubino	7, 2007-	OK	2000-2000	2,501	22 OAD3	msum	31	≥9.0%		4.2#					
Khunti	0010%	UK	0004 0040	0.070	Basal	Bolus or premix insulin	31	≥7.5%					3.7#		
Knunu,	i, 2016 ³⁸	UK	2004–2013	6,072	insulin	or GLP-1 RA	Not reported	≥8.0%				3	.2#		
Schwab	b, 2016 ⁵⁶	USA	2008–2009	8,463	Any drug(s)	OAD or injectable or switch	Not reported	≥9.0%			1.3				
								(0.0	1.0	2.0	3.0	4.0	5.0	6.0
											Median	time to 1	I, years		

Khunti K, 2018 Diabet Obes Metab

GLYCEMIC CONTROL ALGORITHM

INDIVIDUALIZE GOALS

*CKD 3: canagiffozirc HPrEF; dapagiffozin

A1C ≤6.5%

CKO 3 = stage 3 chronic kidney disease; HFrEF = heart failure with reduced ejection fraction; LA = long-acting (224 hour duration)


For patients without concurrent serious illness and at low hypoglycemic risk

A1C >6.5%

For patients with concurrent serious illness and at risk for hypoglycemia

LIFESTYLE THERAPY AND ONGOING GLUCOSE MONITORING (CGM preferred)

INDEPENDENT OF GLYCEMIC CONTROL, IF ESTABLISHED OR HIGH ASCVD RISK AND/OR CKD, RECOMMEND SGLT2I AND/OR LA GLP1-RA

+CKD

DKD and

Albuminuria⁸

PREFERABLY

SGLT2i with

primary evidence

of reducing CKD

progression

OR

SGLT2i with

evidence of

reducing CKD

progression in

CVOTs5,8,8

OR

GLP-1 RA with

proven CVD

benefit1 if SGLT2i

not tolerated or

contraindicated

For patients with T2D

and CKDs (e.g., eGFR

<60 mL/mln/1.73 m²) and

thus at increased risk of

cardiovascular events

ETHER/

SGLT2i

with

proven

CVD

benefit1,7

GLP-1

RA with

proven

CVD

benefit1

NO

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

+HF

Particularly HFrEF

SGLT2i with proven

benefit in this

population5,8,7

(LVEF <45%)

+ASCVD/Indicators of High Risk

 Established ASCVD
 Indicators of high ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH)

GLP-1

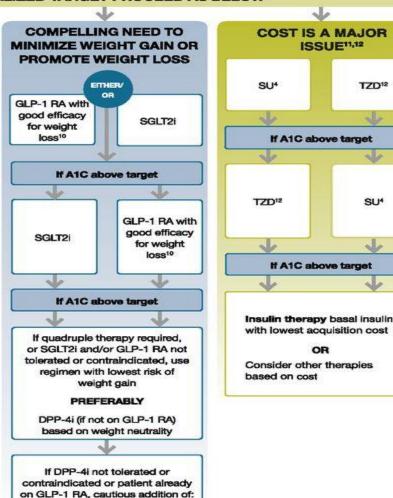
RA with proven CVD benefit¹

SGLT2i with proven CVD benefit¹

If A1C above target

If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV benefit and/or safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit and vice versa¹
- TZD²
- DPP-4i if not on GLP-1 RA
- Basal insulin³
- SU⁴
- . Proven CVD benefit means it has label indication of reducing CVD events
- Low dose may be better tolerated though less well studied for CVD effects
- 3. Degludec or U-100 glargine have demonstrated CVD safety
- Choose later generation SU to lower risk of hypoglycemia; glimepiride has shown similar CV safety to DPP-4i
- Be aware that SGLT2i labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- Empaglificzin, canaglificzin, and dapaglificzin have shown reduction in HF and to reduce CKD progression in CVOTs. Canaglificzin and dapaglificzin have primary renal outcome data. Dapaglificzin and empaglificzin have primary heart fallure outcome data.


NO

IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

COMPELLING NEED TO MINIMIZE **HYPOGLYCEMIA** DPP-4i GLP-1 RA SGLT2i TZD H A1C HA1C If A1C HA1C above above above above target target target target GLP-1 RA SGLT2i SGLT2i SGLT2i OR OR OR OR DPP-4i DPP-4i OR OR TZD TZD TZD GLP-1 RA If A1C above target Continue with addition of other agents as outlined above If A1C above target Consider the addition of SU4 OR basal insulin: · Choose later generation SU with lower risk of hypoglycemia Consider basal insulin with lower risk of hypoglycemia⁶

- Proven benefit means it has label indication of reducing heart failure in this population
- 8. Refer to Section 11: Microvascular Complications and Foot Care
- 9. Degludec / glargine U-300 < glargine U-100 / deternir < NPH insulin
- 10. Semaglutide > liraglutide > dulaglutide > exenatide > lixisenatide
- If no specific comorbidities (i.e., no established CVD, low risk of hypoglycemia, and lower priority to avoid weight gain or no weight-related comorbidities)
- Consider country- and region-specific cost of drugs. In some countries TZDs are relatively more expensive and DPP-4i are relatively cheaper.

- † Actioned whenever these become new clinical considerations regardless of background glucose-lowering medications.
- * Most patients enrolled in the relevant trials were on metformin at baseline as glucose-lowering therapy.

SU⁴ • TZD² • Basal insulin

ALGORITHM FOR ADDING/INTENSIFYING INSULIN

Glycemic

Control Not

at Goal*

START BASAL (Long-Acting Insulin)

A1C <8%

A1C >8%

TDD 0.1-0.2 U/kg

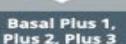
TDD 0.2-0.3 U/kg

Insulin titration every 2-3 days to reach glycemic goal:

- Fixed regimen: Increase TDD by 2 U
- Adjustable regimen:
 - FBG >180 mg/dL: add 20% of TDD
 - FBG 140-180 mg/dL: add 10% of TDD
 - FBG 110-139 mg/dL: add 1 unit
- · If hypoglycemia, reduce TDD by:
 - BG <70 mg/dL: 10% 20%
 - BG <40 mg/dL; 20% 40%

Consider discontinuing or reducing sulfonylurea after starting basal insulin (basal analogs preferred to NPH)

*Glycemic Goal:


- <7% for most patients with T2D; fasting and premeal BG <110 mg/dL; absence of hypoglycemia
- A1C and FBG targets may be adjusted based on patient's age, duration of diabetes, presence of comorbidities, diabetic complications, and hypoglycemia risk

INTENSIFY (Prandial Control)

Add GLP1-RA

Or SGLT2i Or DPP4i

Add Prandial Insulin

- Begin prandial insulin before largest meal
- If not at goal, progress to injections before 2 or 3 meals
- Start: 10% of basal dose or 5 units

Basal Bolus

- Begin prandial insulin before each meal
- 50% Basal / 50% Prandial TDD 0.3-0.5 U/kg
- Start: 50% of TDD in three doses before meals

Insulin titration every 2-3 days to reach glycemic goal:

- Increase prandial dose by 10% or 1-2 units if 2-h postprandial or next premeal glucose consistently >140 mg/dL
- · If hypoglycemia, reduce TDD basal and/or prandial insulin by:
 - BG consistently <70 mg/dL: 10% 20%
 - Severe hypoglycemia (requiring assistance from another person) or BG <40 mg/dL: 20% - 40%

Use Principles in Figure 9.1, including reinforcement of behavioral interventions (weight management and physical activity) and provision of DSMES to meet individualized treatment goals

If injectable therapy is needed to reduce A1C1

Consider GLP-1 RA in most patients prior to insulin²

INITIATION: Initiate appropriate starting dose for agent selected (varies within class)

TITRATION: Titration to maintenance dose (varies within class)

If already on GLP-1 RA or if GLP-1 RA not appropriate OR insulin preferred

If above A1C target

Add basal insulin3

Choice of basal insulin should be based on patient-specific considerations, including cost. Refer to **Table 9.3** for insulin cost information.

Add basal analog or bedtime NPH insulin

INITIATION: Start 10 IU a day OR 0.1-0.2 IU/kg a day

TITRATION:

- Set FPG target (see Section 6: Glycemic Targets)
- Choose evidence-based titration algorithm, e.g., increase 2 units every 3 days to reach FPG target without hypoglycemia
- For hypoglycemia determine cause, if no clear reason lower dose by 10-20%

Assess adequacy of basal insulin dose

Consider clinical signals to evaluate for overbasalization and need to consider adjunctive therapies (e.g., basal dose >0.5 IU/kg, elevated bedtime-morning and/or post-preprandial differential, hypoglycemia [aware or unaware], high variability)

PHARMACOLOGIC APPROACHES TO GLYCEMIC TREATMENT

If above A1C target

Consider GLP-1 RA if not already in regimen

For addition of GLP-1 RA, consider lowering insulin dose dependent on current glycemic assessment and patient factors

Add prandial insulin5

Usually one dose with the largest meal or meal with greatest PPG excursion; prandial insulin can be dosed individually or mixed with NPH as appropriate

INITIATION:

- 4 IU a day or 10% of basal insulin dose
- If A1C <8% (64 mmol/mol) consider lowering the basal dose by 4 IU a day or 10% of basal dose

TITRATION:

- Increase dose by 1-2 IU or 10-15% twice weekly
- For hypoglycemia determine cause, if no clear reason lower corresponding dose by 10-20%

If on bedtime NPH, consider converting to twice-daily NPH regimen

Conversion based on individual needs and current glycemic control. The following is one possible approach:

INITIATION:

- Total dose = 80% of current bedtime NPH dose
- 2/3 given in the morning
- 1/3 given at bedtime

TITRATION:

Titrate based on individualized needs

If above A1C target

If above A1C target

Stepwise additional injections of prandial insulin

(i.e., two, then three additional injections)

Proceed to full basal-bolus regimen

(i.e., basal insulin and prandial insulin with each meal)

Consider self-mixed/split insulin regimen

Can adjust NPH and short/rapid-acting insulins separately

INITIATION:

- Total NPH dose = 80% of current NPH dose
- 2/3 given before breakfast
- 1/3 given before dinner
- Add 4 IU of short/rapid-acting insulin to each injection or 10% of reduced NPH dose

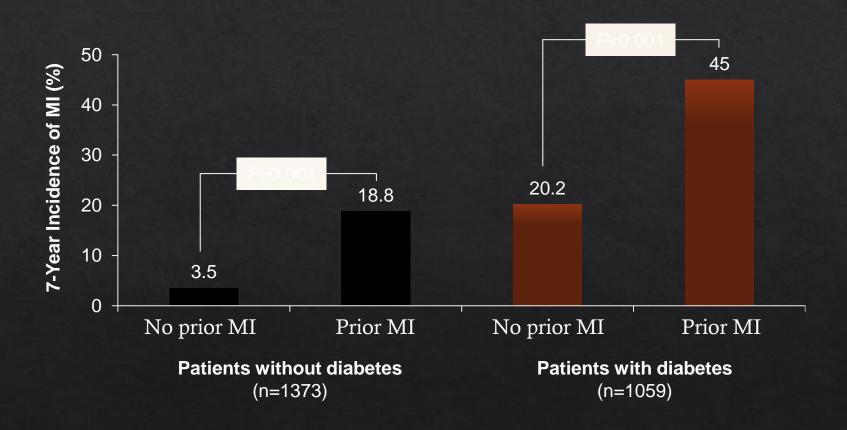
TITRATION:

 Titrate each component of the regimen based on individualized needs

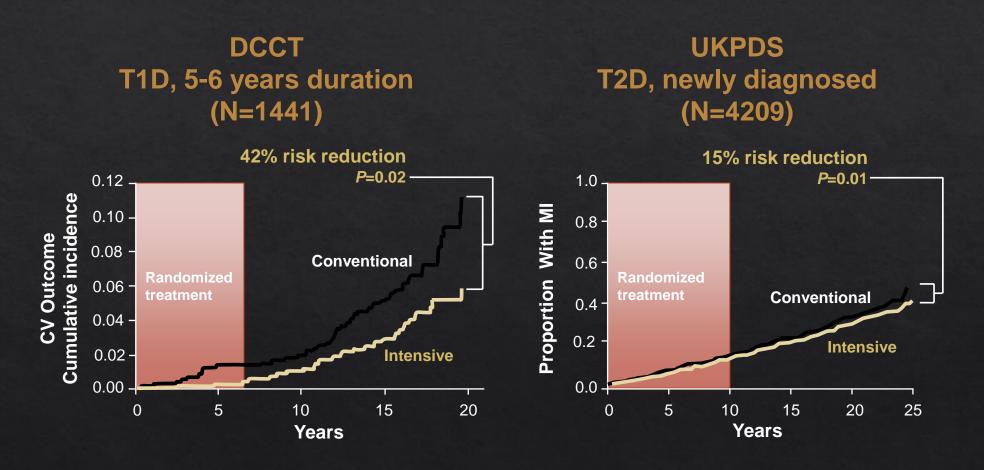
Consider twice daily premix insulin regimen

INITIATION:

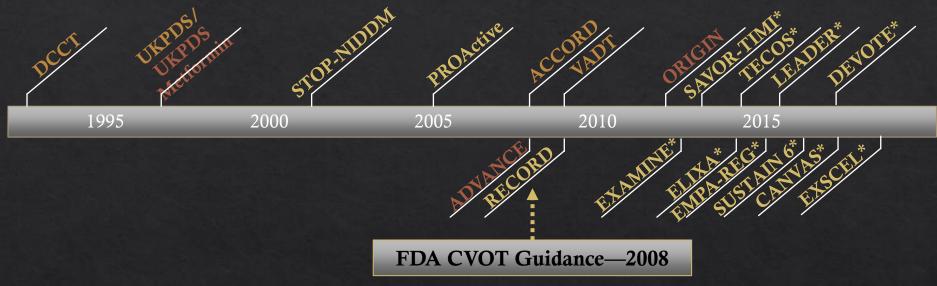
 Usually unit per unit at the same total insulin dose, but may require adjustment to individual needs


TITRATION:

 Titrate based on individualized needs



SHOULD ANTIHYPERGLYCEMIC THERAPY BE FOCUSED ON REDUCING CARDIOVASCULAR RISK?


Diabetes and Cardiovascular Risk

Intensive Glycemic Control Reduces Long-term Macrovascular Risk

Timeline of Major Diabetes Outcomes Trials

Blue = Intensive vs standard control using same set of glucose-lowering agent(s)

Purple = Intensive control with a specific agent vs standard care

Red = Placebo- or active-controlled study

* = FDA-mandated cardiovascular safety trial

ACCORD, Action to Control Cardiovascular Risk in Diabetes; ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation; CANVAS, Canagliflozin Cardiovascular Assessment Study; DCCT, Diabetes Control and Complications Trial; DEVOTE, Trial Comparing Cardiovascular Safety of Insulin Degludec versus Insulin Glargine in Patients with Type 2 Diabetes at High Risk of Cardiovascular Events; EXAMINE, Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care; ELIXA, Evaluation of Lixisenatide in Acute Coronary Syndrome; EMPA-REG, EMPA-REG OUTCOME trial; Exenatide Study of Cardiovascular Event Lowering; LEADER, Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; ORIGIN, Outcome Reduction with an Initial Glargine Intervention; PROActive, Prospective Pioglitazone Clinical Trial in Macrovascular Events; RECORD, Rosiglitazone Evaluated for Cardiovascular Outcomes in Oral Agent Combination Therapy for Type 2 Diabetes; SAVOR-TIMI, Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus—Thrombolysis in Myocardial Infarction; STOP-NIDDM, Study to Prevent Non-Insulin-Dependent Diabetes Mellitus; SUSTAIN, Trial to Evaluate Cardiovascular and Other Long-Term Outcomes with Semaglutide in Subjects with Type 2 Diabetes; TECOS, Trial Evaluating Cardiovascular Outcomes with Sitagliptin; UKPDS, United Kingdom Prospective Diabetes Study; VADT, Veterans Affairs Diabetes Trial.

Cardiovascular Outcomes Trials: A Brief History

- ♦ 2008 FDA guidance mandating assessment of CV safety of all antihyperglycemic agents in RCTs
 - Designed as noninferiority studies to demonstrate study drug was not associated with more MACE than placebo
 - ♦ Some study designs tested for superiority if noninferiority criteria were met
 - ♦ Primary endpoint: composite of cardiovascular death, nonfatal MI, and nonfatal stroke
 - ♦ Some primary endpoints included additional components

Large CV Outcomes Trials in Diabetes (Non-Insulin)

Study	SAVOR	EXAMINE	TECOS	CAROLINA	CARMELINA
DPP4-i	saxagliptin	alogliptin	sitagliptin	linagliptin	linagliptin
Comparator	lac bo	pla	o e o	sulfonylurea	\ac bo
N	16 00	5 10	4, 1	6,000	8, 0
Results	2013	2013	2015	2017	2017

Study	LEADER	ELIXA	SUSTAIN 6	EXSCEL	REWIND
GLP1-RA	liraglutide	lixisenatide	semaglutide	exenatide LR	dulaglutide
Comparator		planebo		pl & h	pro po
N	16,500	14 00	0,000	5,400	8,300
Results	2016	2015	2016	2018	Preliminary

Study	EMPA-REG	CANVAS	DECLARE	NCT01986881
SGLT-2-i	empaglifozin	canagliflozin	dapaliflozin	ertugliflozin
Comparator	sala sa	nle in	placebo	placebo
N	7	4	2 (0)	3900
Results	2015	2017	2019	2020

HARMONY

Albi utide Fu vo 9,463 2018

N	/IACE Events in	CVOTs	with G	LP1 Rec	eptor A	gonists
				Card	iovascula	r Benefits
	Subjects with Established CVD	Non-Fatal MI	Non-Fatal CVA	CV Death	3-Pt MACE	Comments
Liraglutide LEADER 9340 Patients	~81%	Neutral	Neutral	Positive	Positive	3-Pt MACE Driven by significant ↓ in CV death Relative risk reduction ~22%
Semaglutide SQ SUSTAIN-6 Study 3297 Patients	~83%	Neutral	Positive	Neutral	Positive	3-Pt MACE Driven by significant ↓ in non-fatal CVA Relative risk reduction ~39%
Semaglutide PO PIONEER-6 Study 3183 Patients	~85%	Neutral	Neutral	Positive	Positive	3-Pt MACE Driven by significant ↓ in CV death Relative risk reduction ~51%
Lixisenatide ELIXA STUDY 6068 Patients	100%	Neutral	Neutral	Neutral	Neutral	NA
Exenatide EXCEL Study 14752 Patients	~73%	Neutral	Neutral	Neutral	Neutral	3-Pt MACE Barely missed significance, HR 0.91 (p=0.06) Relative risk reduction ~9%
Albiglutide HARMONY Study 9463 Patients	100%	Positive	Neutral	Neutral	Positive	3-Pt MACE Driven by significant ↓ in fatal and non-fatal MI Relative risk reduction ~25%
Dulaglutide REWIND Study 9901 Patients	~31%	UNK	UNK	UNK	Positive	Full results not released/published

	MACE E	vents in	CVOTs v	vith SGL	Γ2 Inhibi	tors	
			Cardio	vascular E			
	Subjects with Established CVD	Non-Fatal MI	Non-Fatal CVA	CV Death	3-Pt MACE	CV Death, HHF (Pre- specified Primary Endpoint)	Comments
Empagliflozin EMPA-REG 7020 Patients	100%	Neutral	Neutral	Positive	Positive	NA	3-pt MACE Driven by significant ↓CV death Relative Risk Reduction 38%
Canagliflozin CANVAS Program 10142 Patients	66%	Neutral	Neutral	Neutral	Positive	NA	3-pt MACE HR 0.86 Relative Risk Reduction 14%
Dapagliflozin DECLARE-TIMI 17160 Patients	41%	Neutral	Neutral	Neutral	Neutral	Positive	Driven by significant ↓CV death Relative Risk Reduction 51%

Canagliflozin (*Invokana*) Gets FDA Nod for CV Protection

Megan Brooks October 31, 2018

The US Food and Drug Administration (FDA) has approved the sodium-glucose cotransporter type 2 (SGLT2) inhibitor canagliflozin (*Invokana*, Janssen) to reduce the risk of major adverse cardiovascular events in adults with type 2 diabetes who have established cardiovascular disease (CVD).

With FDA approval of the supplemental new drug application, canagliflozin becomes the first oral diabetes drug indicated to reduce the risk of myocardial infarction (MI), stroke, or death due to a cardiovascular cause, the company said in a news release.

Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

https://doi.org/10.2337/dci18-0033

CHOOSING GLUCOSE-LOWERING MEDICATION IN THOSE WITH ESTABLISHED ATHEROSCLEROTIC CARDIOVASCULAR DISEASE (ASCVD) OR CHRONIC KIDNEY DISEASE (CKD)

SGLT2i: empagliflozin ,canagliflozin GLP1:

liraglutide > semaglutide > exenatide LAR

Now in SGLT2i

Empagliflozin: CV death Canagliflozin: nonfatal M

nonfatal stroke and CV

death

Dapaglifozin

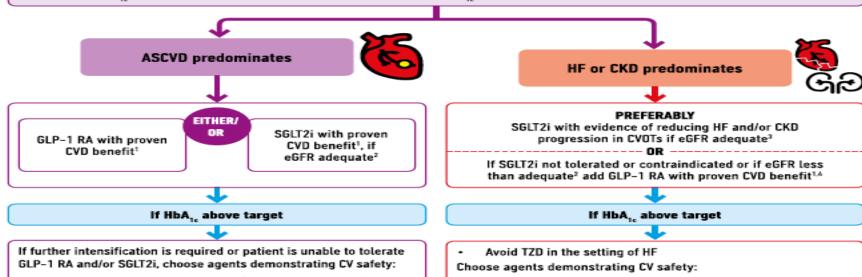
Hospitalizations for HF

Use metformin unless contraindicated or not tolerated

If not at HbA, target:

Continue metformin unless contraindicated (remember to adjust dose/stop metformin with declining eGFR)

Use principles in Figure 1


Add SGLT2i or GLP-1 RA with proven cardiovascular benefit¹ (see below)

If at HbA, target:

If already on dual therapy, or multiple glucose-lowering therapies and not on an SGLT2i or GLP-1 RA, consider switching to one of these
agents with proven cardiovascular benefit¹ (see below)

OR reconsider/lower individualized target and introduce SGLT2i or GLP-1 RA

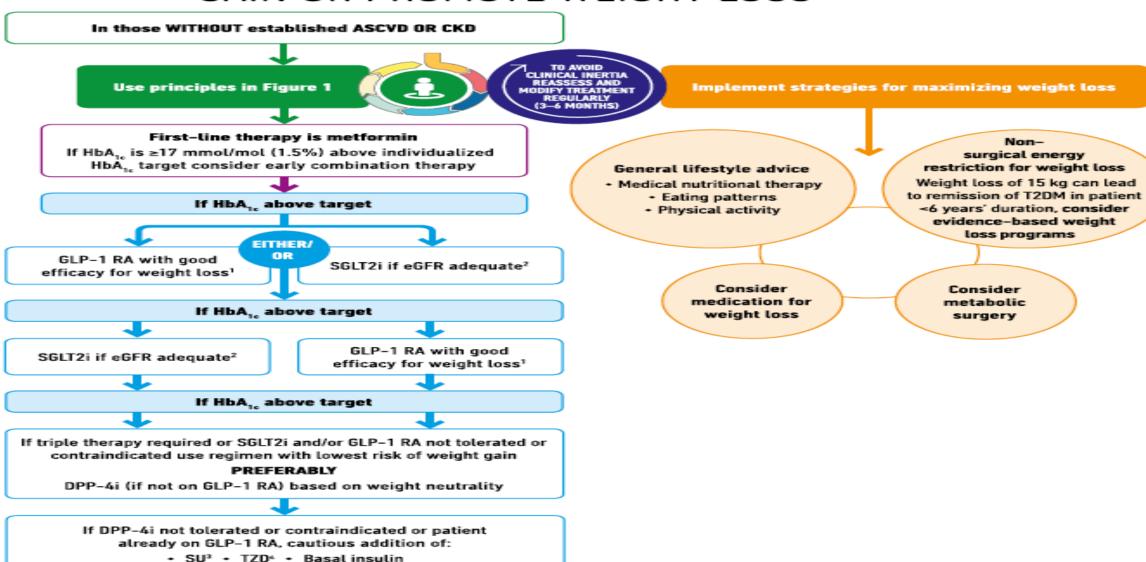
OR reassess HbA, at 3-month intervals and add SGLT2i or GLP-1 RA if HbA, goes above target

- Consider adding the other class (GLP-1 RA or SGLT2i) with proven CVD benefit¹
- DPP-4i if not on GLP-1 RA
- Basal insulin⁵
- TZD⁶
- 011
- Proven CVD benefit means it has label indication of reducing CVD events.
 For GLP-1 RA strongest evidence for liraglutide > semaglutide > exenatide
 extended release. For SGLT2i evidence modestly stronger for empagliflozin >
 canagliflozin.
- Be aware that SGLT2i vary by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- Both empagliflozin and canagliflozin have shown reduction in HF and to reduction in CVOTs
- . Caution with GLP-1 RA in ESRD

Basal insulin5

SU7

- Degludec or U100 glargine have demonstrated CVD safety
- Low dose may be better tolerated though less well studied for CVD effects


Consider adding the other class with proven CVD benefit¹

DPP-4i (not saxagliptin) in the setting of HF (if not on GLP-1 RA)

REASSESS AND MODIFY TREATMENT

Choose later generation SU to lower risk of hypoglycemia

CHOOSING GLUCOSE-LOWERING MEDICATION TO IF COMPELLING NEED TO MINIMIZE WEIGHT GAIN OR PROMOTE WEIGHT LOSS

+CKD

DKD and

Albuminuria⁸

PREFERABLY

SGLT2i with

primary evidence

of reducing CKD

progression

OR

SGLT2i with

evidence of

reducing CKD

progression in

CVOTs5,8,8

OR

GLP-1 RA with

proven CVD

benefit1 if SGLT2i

not tolerated or

contraindicated

For patients with T2D

and CKDs (e.g., eGFR

<60 mL/mln/1.73 m²) and

thus at increased risk of

cardiovascular events

ETHER/

SGLT2i

with

proven

CVD

benefit1,7

GLP-1

RA with

proven

CVD

benefit1

NO

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

+HF

Particularly HFrEF

SGLT2i with proven

benefit in this

population5,8,7

(LVEF <45%)

+ASCVD/Indicators of High Risk

 Established ASCVD
 Indicators of high ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH)

GLP-1

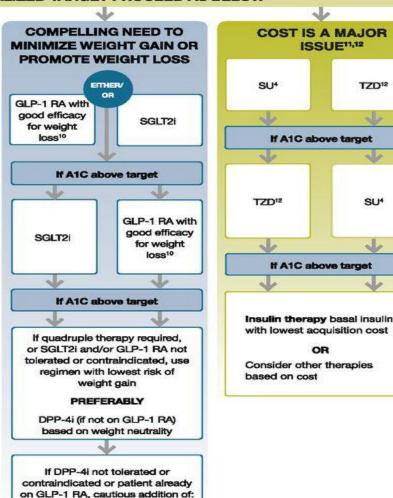
RA with proven CVD benefit¹

ETHERV or SGLT2i with proven CVD benefit¹

If A1C above target

If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV benefit and/or safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit and vice versa¹
- TZD²
- DPP-4i if not on GLP-1 RA
- Basal insulin³
- SU⁴
- . Proven CVD benefit means it has label indication of reducing CVD events
- Low dose may be better tolerated though less well studied for CVD effects
- 3. Degludec or U-100 glargine have demonstrated CVD safety
- Choose later generation SU to lower risk of hypoglycemia; glimepiride has shown similar CV safety to DPP-4i
- Be aware that SGLT2i labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- Empaglificzin, canaglificzin, and dapaglificzin have shown reduction in HF and to reduce CKD progression in CVOTs. Canaglificzin and dapaglificzin have primary renal outcome data. Dapaglificzin and empaglificzin have primary heart fallure outcome data.


NO

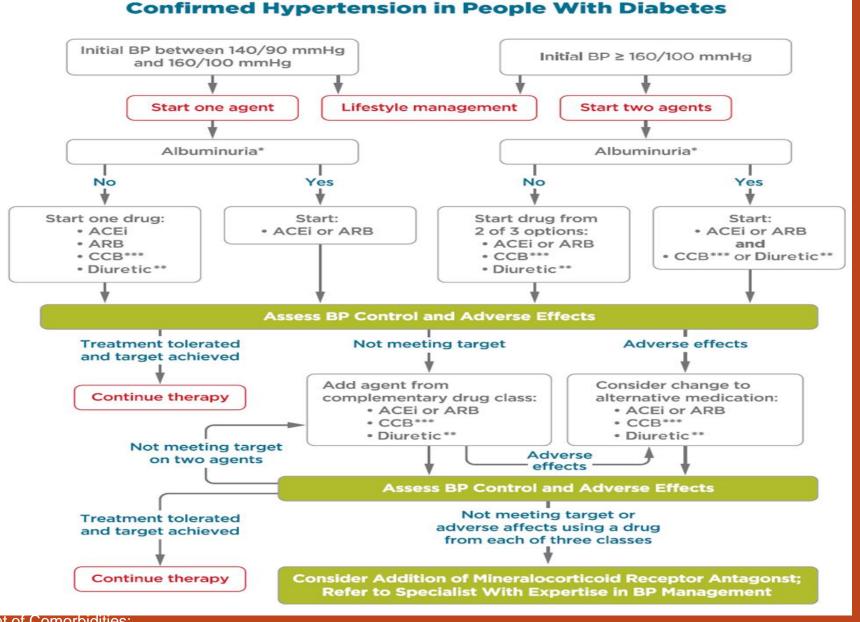
IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

COMPELLING NEED TO MINIMIZE **HYPOGLYCEMIA** DPP-4i GLP-1 RA SGLT2i TZD H A1C HA1C If A1C HA1C above above above above target target target target GLP-1 RA SGLT2i SGLT2i SGLT2i OR OR OR OR DPP-4i DPP-4i OR OR TZD TZD TZD GLP-1 RA If A1C above target Continue with addition of other agents as outlined above If A1C above target Consider the addition of SU4 OR basal insulin: · Choose later generation SU with lower risk of hypoglycemia Consider basal insulin with lower risk of hypoglycemia⁶

- Proven benefit means it has label indication of reducing heart failure in this population
- 8. Refer to Section 11: Microvascular Complications and Foot Care
- 9. Degludec / glargine U-300 < glargine U-100 / deternir < NPH insulin
- 10. Semaglutide > liraglutide > dulaglutide > exenatide > lixisenatide
- If no specific comorbidities (i.e., no established CVD, low risk of hypoglycemia, and lower priority to avoid weight gain or no weight-related comorbidities)
- Consider country- and region-specific cost of drugs. In some countries TZDs are relatively more expensive and DPP-4i are relatively cheaper.

- † Actioned whenever these become new clinical considerations regardless of background glucose-lowering medications.
- * Most patients enrolled in the relevant trials were on metformin at baseline as glucose-lowering therapy.

SU⁴ • TZD² • Basal insulin


Algorithm for Individualizing Glycemic Targets

Most in 6.0%	Most intensive 6.0%			ensive %		Least intensive 8.0%			
0 ,	care capacitie	t, knowledgea es, and compre		ir	Less mo	tivated, nonad self-care capac	herent, limited ities, and weak upport systems		
Low					Mod	Hypo lerate	glycemia risk High		
							ent age, years		
40	45	50	55	60	65	70 Disease du	75 tration, years		
	5		10		15	Other comorb	20		
None			F	ew or mild			tiple or severe		
						hed vascular c	omplications		
Non	e			ovascular disea y microvascula		Advanced	microvascular		

CARDIOVASCULAR DISEASE AND RISK MANAGEMENT

10.4 For individuals with diabetes and hypertension at higher cardiovascular risk (existing atherosclerotic cardiovascular disease or 10-year atherosclerotic cardiovascular disease risk >15%), a blood pressure target of <130/80 mmHg may be appropriate, if it can be safely attained. C</p>

10.5 For individuals with diabetes and hypertension at lower risk for cardiovascular disease (10-year atherosclerotic cardiovascular disease risk < 15%), treat to a blood pressure target of <140/90 mmHg. A

Recommendations for the Treatment of

Goal BP and Initial Therapy in Diabetes to Reduce CV / Renal Risk?

Group	Goal BP (mmHg)	Initial Therapy
ADA (2018)	<140/90;high risk <130/80	ACE Inhibitor/ARB (only if nephropathy or heart failure present)
ACC/AHA BP (2017)	<130/80	ACE Inhibitor/ARB*
KDIGO/KDOQI (NKF) (2013)	<140/90	ACE Inhibitor/ARB*
2014 Expert Panel Report (2013)	<130/80	ACE Inhibitor/ARB*
KDOQI (NKF) (2004)	<130/80	ACE Inhibitor/ARB*
JNC 7 (2003)	<130/80	ACE Inhibitor/ARB*
Am. Diabetes Assoc (2003)	<130/80	ACE Inhibitor/ARB*
Canadian HTN Soc. (2002)	<130/80	ACE Inhibitor/ARB*
Am. Diabetes Assoc (2002)	<130/80	ACE Inhibitor*
Natl. Kidney Foundation (2000)	<140/80	ACE Inhibitor
British HTN Soc. (1999)	<140/80	ACE Inhibitor
JNC VI (1997)	<130/85	ACE Inhibitor

²⁷

INTENSIVE BLOOD PRESSURE MANAGEMENT MAY SAVE LIVES

WHAT'S THE BEST WAY TO TREAT HIGH BLOOD PRESSURE IN PATIENTS 50 AND OLDER?

The SPRINT trial enrolled more than 9,300 participants at UAB and other locations to find out. Investigators divided them into two groups:

STANDARD TREATMENT

THERAPY:

Avg. 2 different blood pressure medications

INTENSIVE TREATMENT

THERAPY:

Avg. 3 different blood pressure medications

RESULTS:

BOUT 30%

lower rates of heart attack, heart failure, ABOU and other cardiovascular events

ABOUT 25% lower risk of death

among participants receiving intensive treatment

Weight loss

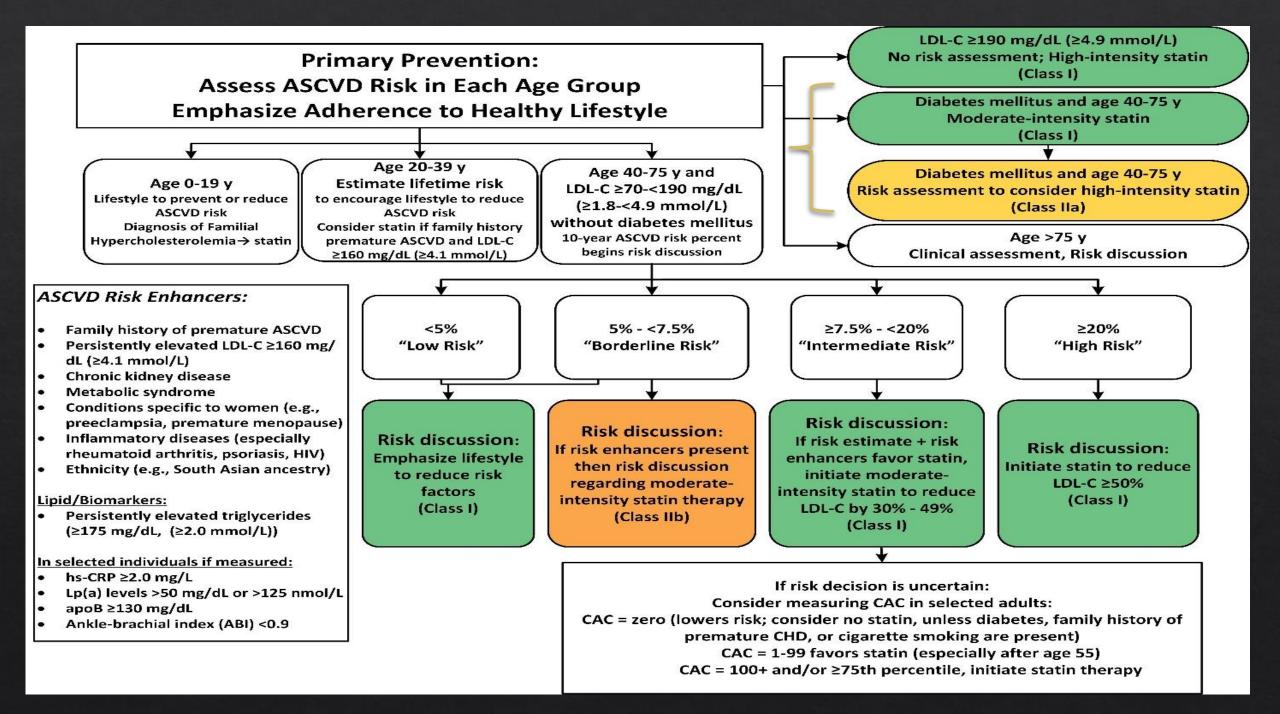
Sodium intake less than 2,300 mg /day

Increase consumption of fruits and vegetables

• 8-10 servings per day

Alcohol intake

- 2 for men
- 1 for women


Low fat dairy products

• 2-3 servings per day

Lifestyle Modifications

Table 10.2—Recommendations for statin and combination treatment in adults with diabetes

Age	ASCVD or 10-year ASCVD risk >20%	Recommended statin intensity^ and combination treatment*
<40 years	No Yes	None† High In patients with ASCVD, if LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)#
≥40 years	No Yes	Moderate‡ High In patients with ASCVD, if LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)

Table 5. Diabetes-Specific Risk Enhancers That Are Independent of Other Risk Factors in Diabetes Mellitus

Risk Enhancers

- Long duration (≥10 years for type 2 diabetes mellitus (S.4.3-20) or ≥20 years for type 1 diabetes mellitus)
- Albuminuria ≥30 mcg of albumin/mg creatinine
- eGFR <60 mL/min/1.73 m²
- Retinopathy
- Neuropathy
- ABI < 0.9

		Treatment goals				
Risk category	Risk factors/10-year risk	LDL-C (mg/dL)	Non-HDL-C (mg/dL)	Apo B (mg/dL)		
Extreme risk	 Progressive ASCVD including unstable angina in individuals after achieving an LDL-C <70 mg/dL Established clinical cardiovascular disease in individuals with DM, stage 3 or 4 CKD, or HeFH History of premature ASCVD (<55 male, <65 female) 	<55	<80	<70		
Very high risk	 Established or recent hospitalization for ACS, coronary, carotid or peripheral vascular disease, 10-year risk >20% DM or stage 3 or 4 CKD with 1 or more risk factor(s) HeFH 	<70	<100	<80		
High risk	 -≥2 risk factors and 10-year risk 10%-20% - DM or stage 3 or 4 CKD with no other risk factors 	<100	<130	<90		
Moderate risk	≤2 risk factors and 10-year risk <10%	<100	<130	<90		
Low risk	0 risk factors	<130	<160	NR		

Abbreviations: ACS, acute coronary syndrome; apo, apolipoprotein; ASCVD, atherosclerotic cardiovascular disease; CKD, chronic kidney disease; DM, diabetes mellitus; HeFH, heterozygous familial hypercholesterolemia; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NR, not recommended.

Barter PJ, et al. *J Intern Med.* 2006;259:247-258; Boekholdt SM, et al. *J Am Coll Cardiol.* 2014;64(5):485-494; Brunzell JD, et al. *Diabetes Care.* 2008;31:811-822; Cannon CP, et al. *N Engl J Med.* 2015;372(25):2387-2397; Grundy SM, et al. *Circulation.* 2004;110:227-239; Heart Protection Study Collaborative Group. *Lancet.* 2002;360:7-22; Jellinger P, Handelsman Y, Rosenblit P, et al. *Endocr Practice.* 2017;23(4):479-497; Lloyd-Jones DM, et al. *Am J Cardiol.* 2004;94:20-24; McClelland RL, et al. *J Am Coll Cardiol.* 2015;66(15):1643-1653; NHLBI. NIH Publication No. 02-5215. 2002; Ridker PM, *J Am Coll Cardiol.* 2005;45:1644-1648; Ridker PM, et al. *JAMA.* 2007;297(6):611-619; Sever PS, et al. *Lancet.* 2003;361:1149-1158; Shepherd J, et al. *Lancet.* 2002;360:1623-1630; Smith SC Jr, et al. *Circulation.* 2006;113:2363-2372; Stevens RJ, et al. *Clin Sci.* 2001;101(6):671-679; Stone NJ. *Am J Med.* 1996;101:4A40S-48S; Weiner DE, et al. *J Am Soc Nephrol.* 2004;15(5):1307-1315.

Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial

Deepak L Bhatt, MD, MPH, Ph. Gabriel Steg, MD, Michael Miller, MD,

Eliot A. Brinton, MD, Terry A. Jacobson, MD, Steven B. Ketchum, PhD,

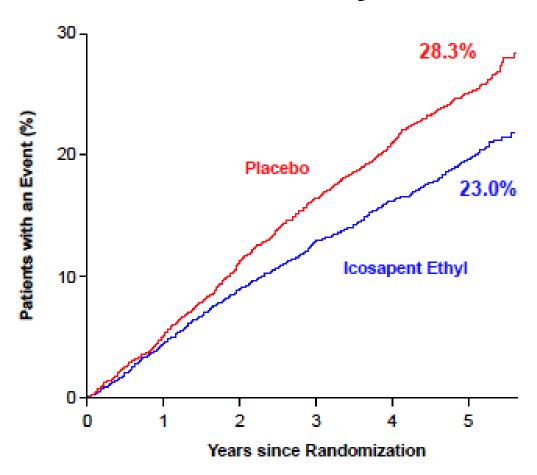
Ralph T. Doyle, Jr., BA, Rebecca A. Juliano, PhD, Lixia Jiao, PhD,

Craig Granowitz, MD, PhD, Jean-Claude Tardif, MD, Christie M. Ballantyne, MD,

on Behalf of the REDUCE-IT Investigators

Key Inclusion Criteria – REDUCE-IT

- Age ≥45 years with established CVD (Secondary Prevention Cohort) or ≥50 years with diabetes with ≥1 additional risk factor for CVD (Primary Prevention Cohort)
- Fasting TG levels ≥150 mg/dL and <500 mg/dL*
- LDL-C >40 mg/dL and ≤100 mg/dL and on stable statin therapy (± ezetimibe) for ≥4 weeks prior to qualifying measurements for randomization


*Due to the variability of triglycerides, a 10% allowance existing in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance.

Adapted with permission* from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial. Clin Cardiol. 2017;40:138-148. [*https://creativecommons.org/licenses/by-nc/4.0/]

Primary End Point:

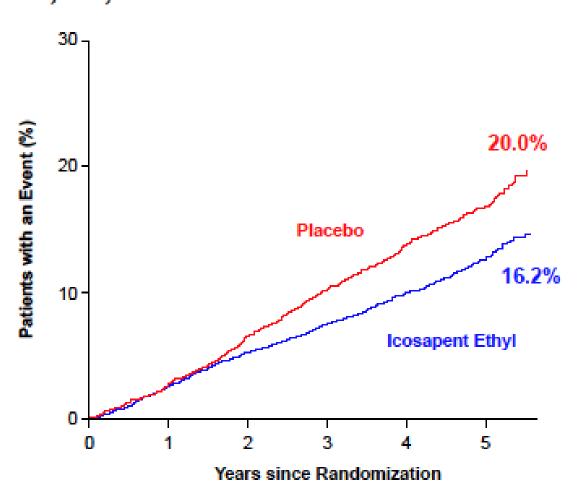
CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

Hazard Ratio, 0.75

(95% CI, 0.68-0.83)

RRR = 24.8%

ARR = 4.8%


NNT = 21 (95% CI, 15-33)

P=0.00000001

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Key Secondary End Point: CV Death, MI, Stroke

Hazard Ratio, 0.74

(95% CI, 0.65-0.83)

RRR = 26.5%

ARR = 3.6%

NNT = 28 (95% CI, 20-47)

P=0.0000006

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Prespecified Hierarchical Testing

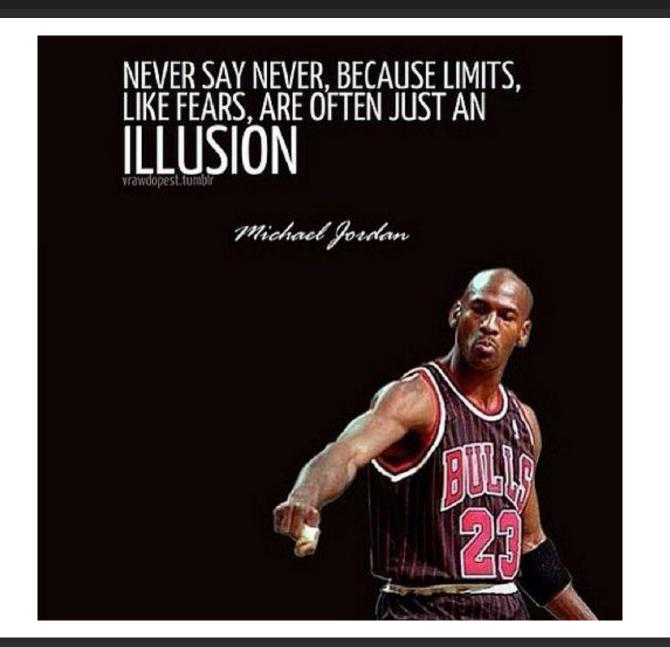
Endpoint	Hazard Rati		Placebo	Hazard Ratio (95% CI)	RRR	P-value
	(95% CI)	n/N (%)	n/N (%)			
Primary Composite (ITT)		705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68-0.83)	25%▼	<0.001
Key Secondary Composite (ITT)	-	459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65-0.83)	26%▼	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction	-=-	392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58-0.81)	31%▼	<0.001
Urgent or Emergent Revascularization		216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55-0.78)	35%▼	<0.001
Cardiovascular Death		174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66-0.98)	20%▼	0.03
Hospitalization for Unstable Angina		108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53-0.87)	32%▼	0.002
Fatal or Nonfatal Stroke		98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55-0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke	-	549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69-0.86)	23%▼	<0.001
Total Mortality		274/4089 (6.7%)	310/4090 (7.6%)	0.87 (0.74-1.02)	13%▼	0.09
	0.4 1.0	1.4		RRR denotes rel	ative risk	reduction
Bhatt DL. AHA 2018, Chicago. lcosaper	nt Ethyl Better	Placebo Better	Bhatt DL, Ste	g PG, Miller M, et al. N	Engl J	Med. 2018.

Updated ADA SOC March 27 2019 on Lipid management for CV Risk Reduction

♦ Based on the outcome of Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial (REDUCE-IT)

The Standards of Care now include a recommendation that icosapent ethyl be considered for patients with diabetes and atherosclerotic cardiovascular disease (ASCVD) or other cardiac risk factors on a statin with controlled LDL-C, but with elevated triglycerides (135-499) to reduce cardiovascular risk.

Antiplatelet Agents: Recommendations


- ♦Use aspirin therapy (75-162 mg/day) as a secondary prevention strategy in those with diabetes and a history of ASCVD. A
- ♦For patients with ASCVD and documented aspirin allergy, clopidogrel (75 mg/day) should be used. B
- ♦Dual antiplatelet therapy (with low-dose aspirin and a P2Y12 inhibitor) is reasonable for a year after an acute coronary syndrome A and may have benefits beyond this period. B

Antiplatelet Agents: Recommendations

♦ Aspirin therapy(75–162mg/day) may be considered as a primary prevention strategy in those with diabetes who are at increased cardiovascular risk, after a discussion with the patient on the benefits versus increased risk of bleeding. C

Conclusion

- ♦ Effective ways to prevent diabetes include both lifestyle modification and drug therapy tailored to the individual.
- ♦ Although a new approach regarding management is pursued, glycemic control is still a main target.
- ♦ Patient with presence of ASCVD, Diabetic Kidney Disease and Heart Failure therapy should include medications with benefits regardless A1c
- ♦ Lipid lowering therapy should be always included in the diabetic patient.

QUESTIONS??