

Sadie Giuliani, PharmD, BCPS, BCIDP

DISCLOSURE

Sadie Giuliani: no conflicts of interest to disclose

Topics

Cephalosporins in patients with penicillin allergy

Delabeling penicillin allergies

2025 IDSA Complicated UTI Guidelines

Durations of therapy

The Problem

	Escherichia c	oli, Carbapenem resistant (C	RE)
	LABMICSENS	Metho	d Not Specified
Amikacin		8 ug/mL	Sensitive
Amoxicillin + Clavulanate		>=32 ug/mL	Resistant *
Ampicillin		>=32 ug/mL	Resistant *
Ampicillin + Sulbactam		>=32 ug/mL	Resistant *
Aztreonam		>=64 ug/mL	Resistant *
Cefazolin		>=64 ug/mL	Resistant *
Cefazolin (Urine)		>=64 ug/mL	Resistant *
Cefepime		>=64 ug/mL	Resistant *
Cefotaxime		>=64 ug/mL	Resistant *
Cefotetan		16 ug/mL	Sensitive *
Cefoxitin		>=64 ug/mL	Resistant *
Cefpodoxime		>=8 ug/mL	Resistant *
Ceftazidime		>=64 ug/mL	
Ceftazidime + Avibactam		0.5 ug/mL	Sensitive ¹
Ceftolozane + Tazobactam		>=32 ug/mL	Resistant *
Ceftriaxone		>=64 ug/mL	Resistant *
Cefuroxime		>=64 ug/mL	Resistant *
Cephalothin		>=64 ug/mL	Resistant *
Ciprofloxacin		>=4 ug/mL	Resistant
Doxycycline			
Ertapenem		>=8 ug/mL	Resistant ¹
Erythromycin			
Extended Spectrum Beta Lactamase		Positive ug/mL	Positive *
Gentamicin		<=1 ug/mL	Sensitive
Gentamicin synergy			
Imipenem		1 ug/mL	Sensitive *
Imipenem/Relebactam	0.50 ug/mL Sensitive		
Levofloxacin		>=8 ug/mL	Resistant
Linezolid			
Meropenem		4 ug/mL	Resistant 1
Moxifloxacin		>=8 ug/mL	Resistant *
Nalidixic Acid		>=32 ug/mL	Resistant *
Nitrofurantoin		<=16 ug/mL	
Piperacillin + Tazobactam		>=128 ug/mL	Resistant *
Streptomycin synergy			
Tetracycline			Sensitive *
Tigecycline		<=0.5 ug/mL	
Tobramycin		>=16 ug/mL	
Trimethoprim + Sulfamethoxazole		>=320 ug/mL	Resistant

The Problem

	, s										Pseudomo Resistant (d
GRAM NEGATIVE ORGANISMS	Number of isolates	NITROFURANTOIN [§]	CEFAZOLINI	AMPICILLIN	CEFTRIAXONE	AMPICILLIN/ SULBACTAM (UNASYN)	TRIMETHOPRIM/ SULFA (BACTRIM)	LEVOFLOXACIN	PIPERACILLIN/ TAZO	CEFTAZIDIME	CEFEPIME	MEROPENEM	GENTAMICIN	TOBRAMYCIN
Citrobacter freundii	33	969	R	R	63	R	84	96	66	66	96			
Enterphacter cloacee complex	65	459	D	D	70	D	96	100	73	73	98	-	-	-
Escherichia coli	618	969	901	65	92	74	86	88	-			-	-	
riaemopniius iniiuenzae	20 "	-	-	75	-	•			-	•	-	-	-	-
Klebsiella (Enterobacter) aerogenes**	31"	259	R	R	83	R	100	96	87	91	100	-		
Klebsiella oxytoca	57	809	751	R	100	87	89	98	-			-		-
Klebsiella pneumoniae complex	117	209	961	R	96	87	91	93	-			-		
Morganella morganii**	24".†	R	R	R	92	15	92	92	100	92	100	-		
Proteus mirabilis	50	R	951	81	100	91	89	82	-				-	-
Pseudomonas aeruginosa	114	-	R	R	R	R	R	85	92	97	99	91	R	97
Serratia marcescens**	48	R	R	R	_ 100	R	97	97	-	-	-	-	-	

	ANTIBIOTICS ROUTINELY REPORTED [6]	АМК	AMP	SAM	CEFAZ (Urine)	CEFP	стт	TAZ	CRO	ERTA	GM	IMP	LEV	MER	MIN	TZP ^[5]	TET	тов	TMP/ SMX	Urine Total	NFD
#	ORGANISMS TESTED [2]	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	% S	#[0]	% S
[15]	Acinetobacter baumanii [1]	71		63		44		47	12		60	56	47	53	81	47	56	60	50		
70	Enterobacter aerogenes							81	80		100		100	100		[5]			100	[39]	8
166	Enterobacter cloacae complex							83	82		99		98	99		[5]			95	83	49
2578	Escherichia coli ALL		48		83			91	85		88		70	100		[5]			71	2165	96
525	Escherchia coli ESBL 1-41 1/ %	90	U		U	04	00	30		100	29	100	10	100	/4	00	24	21	43	400	00
96	Klebsiella oxytoca				79			99	94		98		100	100		[5]			96	[44]	98
696	Klebsiella pneumoniae				97			98	98		98		96	99		[5]			92	497	38
61	Klebsiella pneumoniae ESBLI 1. 4]				0	41	100	20	2	100	36	100	57	100		57	27	31	13	55	7
334	Proteus mirabilis		75		90			99	96		85		64	100		[5]			70	306	0
771	Pseudomonas aeruginosa							88			88		70	80		89					
83	Serratia marcescens.							90	90		100		94	99		[5]			99	[19]	0

"Just one more day"

9%

Increase in *C. difficile* risk per day

Chalmers JD, et al. Risk factors for *Clostridium difficile* infection in hospitalized patients with community-acquired pneumonia. Journal of Infection 2006 Jul 1;73(1)45-53.

4%

Increase of penicillinresistant *S. pneumoniae* per day

Nasrin D. Et al. Effect of beta-lactam antibiotic use in children on pneumococcal resistance to penicillin: prospective cohort study. BMJ. 2002 Jan 5;234(7328);28 4%

Increase in antipseudomonal resistance per day

Teshorne BF, et al. Duration of Exposure to Antipseudomonal beta-lactam Antibiotics in critically ill and development of new resistance. Pharmacotherapy. 2019 Mar;39(3):261-70.

5%

Increased odds of an adverse drug reaction (ADR) per day

Curran J, et al. Estimating daily antibiotic harms: an umbrella review with individual study meta-analysis. Clin Microbiol Infect. 2022 Apr;28(4):479-490. doi: 10.1016/j.cmi.2021.10.022.

What can we do about it?

TARGETED ANTIMICROBIALS

OPTIMIZED DURATIONS
OF THERAPY

PATIENT EDUCATION
WHEN ANTIBIOTICS ARE
NOT THE ANSWER

45 year-old female is admitted with left lower extremity cellulitis. She complains of nausea and vomiting. SCr is 1.2 (baseline is 0.9). She is afebrile, wbc 12k, hemodynamically stable. She has a penicillin allergy. Which antibiotic is most appropriate?

- 1. PO sulfamethoxazole-trimethoprim
- 2. cefazolin
- 3. PO levofloxacin
- 4. vancomycin + aztreonam

Most cephalosporins are safe in the setting of penicillin allergy

Practice parameter

Drug allergy: A 2022 practice parameter update

Penicillin-Cephalosporin
Cross-reactivity

Older data: 5-10%

Newer data: <2%

CBS 12	We suggest that for patients with a history of anaphylaxis to a penicillin, a structurally dissimilar R1 side chain cephalosporin can be administered without testing or additional precautions.	Conditional	Moderate
CBS 13	We suggest that for patients with a history of an unverified (not confirmed) nonanaphylactic penicillin allergy, a cephalosporin can be administered without testing or additional precautions.	Conditional	Moderate
CBS 14	We suggest that in patients with a history of an unverified nonanaphylactic cephalosporin allergy, a penicillin can be administered without testing or additional precautions.	Conditional	Low
CBS 15	We suggest that in patients with a history of anaphylaxis to cephalosporins, penicillin skin testing and drug challenge should be performed prior to administration of a penicillin therapy.	Conditional	Low

Caution in severe cutaneous reactions (SJS/TEN, DRESS, AGEP)

Structure: beta-lactam ring and side chains (R1 and R2)

Penicillin Structure

Acyl side chain Thiazolidine ring CH_3 $\mathsf{CH}_{\mathfrak{P}}$ Beta-lactam ring

Cephalosporin Structure

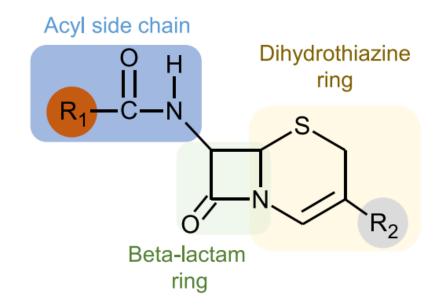


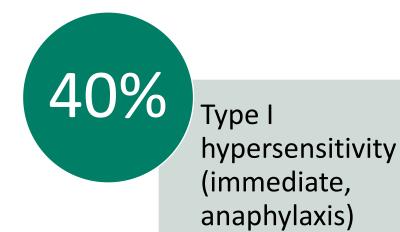
FIG 2. Penicillins and cephalosporins share common structures that are thought to be the source of crossreactivity: (1) beta-lactam ring, shown in green; (2) side chain, or R group with R1 location shown in red and R2 location shown in gray. Cross-reactivity is largely based on R₁ side chains, with identical side chains in patients with IgE-mediated allergy posing the highest risk. Rarely, cross-reactivity has been demonstrated through R2 side chains and the beta-lactam ring (see Table XII).

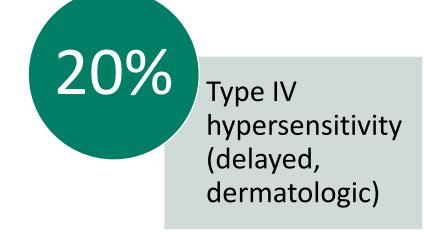
Penicillin – Cephalosporin structural similarity

				P	enicillir	ıs						1st							2nd			
		Nafcillin	Oxacillin	Dicloxacillin	Penicillin G / V	Piperacillin	Ampicillin	Amoxicillin	Cefadroxil	Cefatrizine	Cephalexin	Cefazolin	Ceftezole	Cephalothin	Cephapirin	Cefoxitin	Cefuroxime	Cefotetan	Cefprozil	Cefaclor	Cefonicid	Cefamandole
	Nafcillin																					
1 1	Oxacillin			r1																		
1 1	Dicloxacillin		r1																			
PCN	Penicillin G / V					r1'	r1'	r1'	r1	r1	r1								r1	r1	r1	r1
	Piperacillin				r1'		R1'	r1'	r1'	r1'	R1'								r1'	R1'	r1'	r1'
	Ampicillin				r1'	R1'		r1'	r1	r1	R1								r1	R1	r1	r1
	Amoxicillin				r1'	r1'	r1'		R1	R1	r1'								R1	r1	r1	r1

						310	t					4	th		5th		Mono
		Cefoperazone	Ceftibuten	Cefdinir	Cefixime	Ceftriaxone	Cefditoren	Cefodizime	Cefotaxime	Cefpodoxime	Ceftazidime	Cefepime	Cefpirome	Ceftaroline fosami	Ceftolozane	Cefiderocol	Aztreonam
	Nafcillin																
	Oxacillin																
	Dicloxacillin																
PCN	Penicillin G / V	r1'															
	Piperacillin	R1"															
	Ampicillin	r1'															
	Amoxicillin	R1'															

R1 (red cell) - identical R1 structure


R1' or R1" - only the ring or branch chain moiety of the R1 structure is identical, respectively.


<u>r1 or r2</u> - *similar* R1 or R2 structures R1' or r1" - only the ring or branch chain moiety of the R1 structure is similar, respectively

Blank cells – no R1 or R2 structural similarities

Penicillin – Cephalosporin cross-reactivity with IDENTICAL R1 side chain structure

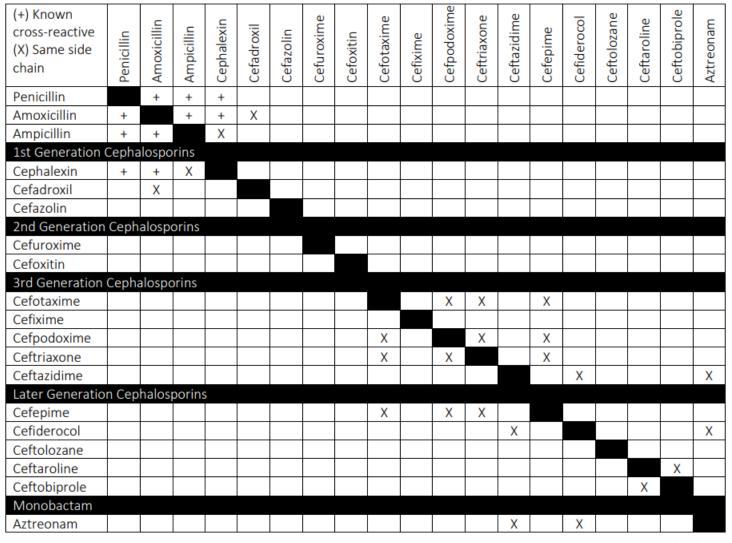
- Aminopenicillin/aminocephalosporin: One large population-based study (over 1.1M antibiotic courses) found similar rates of allergic reaction to ampicillin, cephalexin, and cefaclor (AAC) in patients with a preexisting ACC allergy compared to patients with a preexisting sulfonamide allergy used as the control (0.87% vs 0.7%, p=0.11). The rate was 0.41% in patients with no preexisting AAC/sulfa allergy.
- The R2 side chain and beta-lactam ring appear to be unimportant for cross-reactivity.

Cephalosporin – Cephalosporin Cross-reactivity

CBS 10	We suggest that for patients with a history of nonanaphy challenges (without prior skin test) to cephalosporins performed to determine tolerance.		Conditional	Moderat
CBS 11	We suggest that for patients with a history of anaphylax cephalosporin skin test should be confirmed prior to a cephalosporin with a nonidentical R1 side chain.		Conditional	Low
	non-anaphylactic			
	cephalosporin allergy	dissimilar cepha	alosporin or penic	illin
			or penicillin skin to	

• The R2 side chain seems to be less important than the R1 side chain

anaphylactic


cephalosporin allergy

drug challenge with dissimilar cephalosporin (higher

risk)

Non-anaphylactic reactions can be challenged directly with structurally unrelated cephalosporins

- Cefazolin shares no side chain similarity with any other beta-lactam!
- Side-chain-based crossreactivity charts are widely available online

45 year-old female is admitted with left lower extremity cellulitis. She complains of nausea and vomiting. SCr is 1.2 (baseline is 0.9). She is afebrile, wbc 12k, hemodynamically stable. She has a penicillin allergy. Which antibiotic is most appropriate?

- 1. PO sulfamethoxazole-trimethoprim
- 2. cefazolin
- 3. PO levofloxacin
- 4. vancomycin + aztreonam

A 60-year-old male states he has a penicillin allergy. His reaction was a rash/hives as a child (his mother told him). He does not know if treatment was required. You talk to him about the importance of assessing if he is still allergic to penicillin. You calculate his PEN-FAST score as 1. What is the next step?

- 1. Refer him to an allergist for skin testing
- 2. Offer him an oral amoxicillin challenge
- 3. Delete his allergy because he no longer has an allergy
- Tell him he is still very likely allergic to penicillins and no further follow-up is needed

Is it a true penicillin allergy? Making a case to delabel

Beta-lactams			
CBS 4	We recommend that a proactive effort should be made to delabel patients with reported penicillin allergy, if appropriate.	Strong	Moderate
CBS 5	We recommend against any testing in patients with a history inconsistent with penicillin allergy (such as headache, family history of penicillin allergy, or diarrhea), but a 1-step amoxicillin challenge may be offered to patients who are anxious or request additional reassurance to accept the removal of a penicillin allergy label.	Strong	Low
CBS 6	We suggest penicillin skin testing for patients with a history of anaphylaxis or a recent reaction suspected to be IgE-mediated.	Conditional	Low
CBS 7	We recommend against the routine use of multiple-day challenges in the evaluation of penicillin allergy.	Strong	Low
CBS 8	We recommend against penicillin skin testing prior to direct amoxicillin challenge in pediatric patients with a history of benign cutaneous reaction (such as MDE and urticaria).	Strong	Moderate
CBS 9	We suggest that direct amoxicillin challenge be considered in adults with a history of distant (ie, >5 years ago) and benign cutaneous reactions (such as MDE and urticaria).	Conditional	~10% of patients report a penicillin allergy >90% tolerate penicillins

What has changed?

Rate of IgE-mediated penicillin allergies is decreasing

• Decreased use of parenteral penicillins, anaphylactic reactions to oral amoxicillin are rare

Penicillin-specific IgE wanes with time

• 80% of people are no longer allergic after 10 years

Some cutaneous reactions are a result of underlying infection or interaction between the infectious agent and the antibiotic

• viral exanthems in childhood, Epstein-Barr virus and aminopenicillin

Assumption penicillin allergies run in families

• independent risk factor for self-reported penicillin allergy, account for 16% of reported allergies in one study

Mislabeling predictable nonimmunologic symptoms as allergic

• intolerances or side effects

Consequences of a Penicillin Allergy

increased risk of mortality with the use of less effective antibiotics

50% increased odds of surgical site infection

increased rates of infection with methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant *Enterococcus* (VRE)

higher health care **costs** (including more hospital days and readmissions)

Increased risk of adverse effects including C. difficile

PEN-FAST Tool

- Helpful for identifying low risk allergies (score <3)
- Adults only, should not be used in children <12 years old

PEN	Penicillin allergy reported by patient		If yes, proceed with assessment
F	Five years or less since reaction ^a		2 points
S	Anaphylaxis or angioedema or Severe cutaneous adverse reaction ^b		2 points
Т	Treatment required for reaction ^a		1 point
		[]	Total points
	Interpretation		
Points			
0 Very lo	ow risk of positive penicillin allergy test <1% (<	1 in 10	0 patients reporting penicillin allergy)
1-2 Low ri	sk of positive penicillin allergy test 5% (1 in 20	patient	rs)
3 Moder	rate risk of positive penicillin allergy test 20% (1 in 5 p	atients)
4-5 High r	isk of positive penicillin allergy test 50% (1 in 2	2 patien	ts)

Trubiano JA, et al. JAMA Intern Med. 2020;180;(5):745-752. Copaescu AM, et al. JAMA Netw Open. 2022;5;(9):e2233703. 20

PALACE study: Direct oral challenge for PEN-FAST score <3

JAMA Internal Medicine

RCT: Efficacy of a Clinical Decision Rule to Enable Direct Oral Challenge in Patients With Low-Risk Penicillin Allergy

POPULATION

130 Men, 247 Women

Adults ≥18 y old with a low-risk penicillin allergy

Median age, 51 y

INTERVENTION

377 Participants analyzed

190 Control

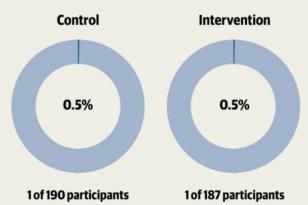
Skin prick and intradermal penicillin testing, followed by oral challenge if skin testing results are negative

187 Intervention

Direct oral penicillin drug challenge

SETTINGS / LOCATIONS

6 Hospitals in North America and Australia


PRIMARY OUTCOME

Between-group difference in the proportion of participants with a physician-verified immune-mediated positive oral penicillin challenge (percentage points); noninferiority margin was set at 5 percentage points

FINDINGS

The intervention was found to be noninferior to the control for the primary outcome in adults with low-risk penicillin allergy

Proportion of participants with a positive oral penicillin challenge

Risk difference, 0.0084 (90% CI, -1.22 to 1.24) percentage points, which is less than the noninferiority margin

Copaescu AM, Vogrin S, James F, et al. Efficacy of a clinical decision rule to enable direct oral challenge in patients with low-risk penicillin allergy: the PALACE randomized clinical trial. JAMA Intern Med. Published online July 17, 2023. doi:10.1001/jamainternmed.2023.2986

© AMA

Practical Tips for Oral Challenges

- Inpatient
 - Engage multidisciplinary team
 - Nursing, pharmacy, LIPs
 - Create order panel with reaction medications and instructions for nursing

- Outpatient
 - Reimbursable procedure
 - Coding and procedure guidance on AAAAI website

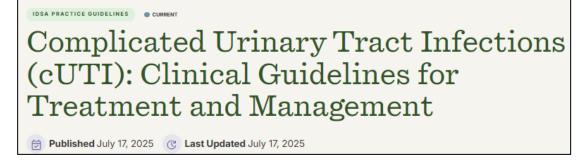
Consider a statement of tolerance in their after-visit summary or a wallet card

I am NOT allergic to Penicillin	ALLERGY INFORMATION Name: Date of birth:					
Penicillin skin testing (prick and intradermal) followed						
by an oral Amoxicillin challenge was performed at Parkland on	Allergies:	Reaction:				
RESULT: Negative (No Reaction)						
est performed by						

https://college.acaai.org/coding-for-penicillin-allergy-testing-everything-you-need-to-know/https://education.aaaai.org/penicillin-allergy-center/penicillin

A 60-year-old male states he has a penicillin allergy. His reaction was a rash/hives as a child (his mother told him). He does not know if treatment was required. You talk to him about the importance of assessing if he is still allergic to penicillin. You calculate his PEN-FAST score as 1. What is the next step?

- 1. Refer him to an allergist for skin testing
- 2. Offer him an oral amoxicillin challenge
- 3. Delete his allergy because he no longer has an allergy
- Tell him he is still very likely allergic to penicillins and no further follow-up is needed


A patient receives empiric therapy with ceftriaxone 2g IV daily for complicated UTI. Urine culture grows >100k CFU/ml of *K. pneumoniae* resistant to fluroquinolones but susceptible to all other tested antibiotics. Blood cultures also grow the same organism. On hospital day 3 she is afebrile, vital signs are normal as well as labs and mentation. Which duration and route of antibiotic therapy should the patient receive?

- 1. Ceftriaxone for 11 more days (14 days total)
- 2. Ceftriaxone for 4 more days (7 days total)
- 3. PO trimethoprim-sulfamethoxazole for 11 more days (14 days total)
- 4. PO trimethoprim-sulfamethoxazole for 4 more days (7 days total)

2025 IDSA Complicated UTI Guidelines

- Most important outcome: mortality (rarely identified in clinical trials though)
- Other critical outcomes
 - Clinical cure at test-of-cure (TOC)
 - Recurrence of infection at late follow-up
- Important but not critical
 - Microbiologic eradication
- Clinical decision threshold = ≥10% increase in clinical failure and microbiologic cure
 - If antibiotic A leads to increase in clinical failure of >10% compared to antibiotic B, difference

was clinically unacceptable

cUTI = infection extending beyond the bladder

New classifications of uUTI and cUTI

Old Classifications

Uncomplicated UTI:

Acute cystitis in afebrile nonpregnant premenopausal women with no diabetes and no urologic abnormalities

Acute Pyelonephritis: Acute kidney infection in women otherwise meeting the definition of uncomplicated UTI above

Complicated UTI: All other UTIs

New Classifications

Uncomplicated UTI: Infection confined to the bladder in afebrile women or men

Complicated UTI: infection beyond the bladder in women or men

- Pyelonephritis
- Febrile or bacteremic UTI
- Catheter-associated (CAUTI)
- Prostatitis* (*not covered by these guidelines)

Who do these guidelines not apply to?

- Uncomplicated UTI = bladder only
 - Dysuria, urgency, frequency, suprapubic pain
 - No systemic signs or symptoms
 - Can include:
 - Men
 - Recurrences
 - Underlying urologic abnormalities
 - Immunocompromise
 - Diabetes
 - Updated IDSA guidelines in progress!
 - See WikiGuidelines Group Consensus Statement in interim
- Asymptomatic bacteriuria
 - see IDSA ASB guidelines

- Generally excluded from clinical trials
 - Renal transplant
 - Pregnant, lactating
 - Neutropenia and other immunocompromise
 - Pediatrics
 - Transgender or gender diverse persons
 - Lack of source control (urinary) obstruction)
 - Urinary stones
 - Catheterized patients
 - Abscesses of the urinary tract
 - **Prostatitis**
 - Renal failure
 - Nephrostomy tubes or urinary stents

Preferred Drugs

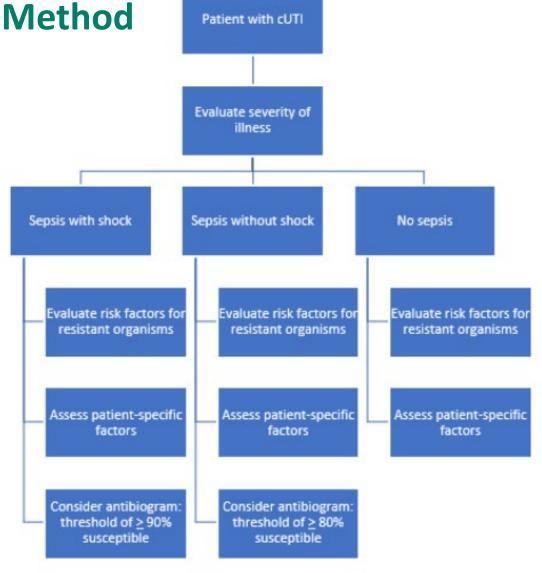
Condition of the Patient	Preferred	Alternative
Sepsis with or without	Third or fourth generation	Novel beta lactam-beta lactamase
shock**	cephalosporins,*	inhibitors, ⁺ cefiderocol,
	carbapenems,# piperacillin-	plazomicin, or older
	tazobactam, fluoroquinolones ^{&}	aminoglycosides [%]
Without sepsis, IV route of	Third or fourth generation	Carbapenems,# newer agents
therapy	cephalosporins,* piperacillin-	(novel beta lactams-beta
	tazobactam, or	lactamase inhibitors,* cefiderocol,
	fluoroquinolones ^{&}	plazomicin), or older
		aminoglycosides [%]
Without sepsis, oral route of	Fluoroquinolones ^{&} or	Amoxicillin-clavulanate or oral
therapy	trimethoprim-sulfamethoxazole	cephalosporins (see Table 3.1)

Empiric Selection using the Four Step Method

Severity of illness

- ≥2 SOFA score increase, qSOFA or SIRS
- Without sepsis, inappropriate empiric antibiotic treatment (IEAT) unlikely to impact mortality (<5%)

Risk factors for resistance


- Recent > distant urine cultures and antibiotics
- 3-6 month look back
- Avoid fluoroguinolones if used in last 12 months

Patient-specific considerations

Allergies, contraindications, drug-drug interactions

If septic, consider the antibiogram

- Use data from the last 12 months
- Based on modeling of increased mortality risk associated with IEAT in sepsis/shock
- Use prior cultured organism, or if none, use *E coli*

Definitive Antibiotic Therapy

- Suggest targeted spectrum instead of continuing empiric broad-spectrum antibiotics
- May be less practical in the outpatient setting
- Places high value on stewardship
 - Unclear resistance prevention benefits

Timing of IV to PO

- Some patients can be managed entirely with PO antibiotics in the outpatient setting
- Transition to PO antibiotics when:
 - Clinically improving
 - Able to take PO medication
 - There is an effective PO option
- Includes Gram negative bacteremia
 - Afebrile, hemodynamically stable, source control (obstruction relief)
- Trials mostly excluded catheters, sepsis or septic shock, immunocompromise, severe renal insufficiency, functional/structural abnormalities

Figure 1.2: Stepwise assessment of IV to oral switch and duration of antibiotic therapy

Abbreviations: IV=intravenous, cUTI=complicated UTI. Drug-bug mismatch means that the causative organism is not susceptible to the antibiotic prescribed.

PO options: The bug doesn't care how the drug got there

✓ Preferred:

- third generation cephalosporins (cefpodoxime)
- sulfamethoxazole/trimethoprim (SXT)
- fluoroguinolones (FQ)
- most data with FQ, female, no catheter, no abscess

© Conflicting evidence:

- earlier generation cephalosporins
 - cefuroxime, ?understudied
 - cephalexin, ?suboptimal dosing
- amoxicillin +/- clavulanate
 - ?suboptimal dosing
- low bioavailability third generation cephalosporins (cefdinir)
 - More readmissions than FQ/SXT
- Nitrofurantoin and oral fosfomycin have inadequate blood/tissue penetration

Drugs	Oral absorption (%)	Urinary excretion (%)	Dose for patients with normal renal function
Amoxicillin-clavulanate	80 (amoxicillin) ²² variable (clavulanate) ²³	50-70 (amoxicillin) ²² 25-40% (clavulanate) ²²	875mg-125mg every 8 to 12 hours ²⁴⁻³² Other regimens may be more effective ^a
Cefixime	50 ³³	50 ³³	400mg once daily ³⁴
Cefpodoxime	5033	80 ³³	200mg to 400mg every 12 hours ^{31,35,36}
Ceftibuten	75-90 ³³	73 ³³	9mg/kg daily (children) ^b 400mg daily or 200mg every 12 hours (adults) ^{37,38}
Cefuroxime	52 ^{33,39}	90 ^{33,39}	500mg every 12 hours ^{31,40}
Cephalexin	90 ³³	9033	500mg to 1000mg every 6 hours ^{24-29,32,41,42} Other regimens may be more effective ^a
Ciprofloxacin	70 ⁴³	40-50 ⁴³	500mg to 750mg every 12 hours ^{28,31,41,44,45}
Levofloxacin	9948	64- <mark>100</mark> 46	500mg to 750mg daily ^{19,36,41,45}
Other oral beta-lactams (e.g. amoxicillin, cefadroxil, cefaclor, cefdinir)	limited and/or dis		s highly bioavailable oral alternatives are more use with infectious disease pharmacist ilable.
Trimethoprim- sulfamethoxazole	70- <mark>90⁴⁷</mark>	84 (sulfamethoxazole), 66 (trimethoprim) ⁴⁷	800mg-160mg every 12 hours ^{31,44}

Duration of Therapy

- Trials excluded catheters, severe sepsis, immunocompromising conditions, abscesses, CKD, prostatitis, complete urinary obstruction, undergoing urologic surgical procedures
- Important to diagnose prostatitis: 10-14 days
 - Two trials in men with febrile UTI showed decreased clinical cure but did not clearly exclude prostatitis
- Beta-lactams may require higher doses

Fluroquinolones: 5-7 days

Non-fluoroquinolones: 7 days

Bacteremia: 7 days

A patient receives empiric therapy with ceftriaxone 2g IV daily for complicated UTI. Urine culture grows >100k CFU/ml of *K. pneumoniae* resistant to fluroquinolones but susceptible to all other tested antibiotics. Blood cultures also grow the same organism. On hospital day 3 she is afebrile, vital signs are normal as well as labs and mentation. Which duration and route of antibiotic therapy should the patient receive?

- 1. Ceftriaxone for 11 more days (14 days total)
- 2. Ceftriaxone for 4 more days (7 days total)
- 3. PO trimethoprim-sulfamethoxazole for 11 more days (14 days total)
- 4. PO trimethoprim-sulfamethoxazole for 4 more days (7 days total)

You are seeing a patient in clinic with community-acquired pneumonia. What is the shortest duration of therapy to consider for this patient?

- 1. 3 days
- 2. 5 days
- 3. 7 days
- 4. 10 days

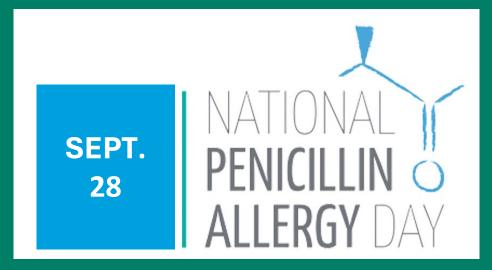
2025 ATS Community Acquired Pneumonia (CAP) Guidelines

3-5 days

Outpatient CAP

3-5 days

Inpatient, non-severe CAP


≥5 days

Inpatient, severe CAP

Shorter Is Better				
Diagnosis	Short (d)	Long (d)	Result	#RCT
CAP	3-5	5-14	Equal	14
Atypical CAP	1	3	Equal	1
Possible PNA in ICU	1 3	14-21	Equal	1*
VAP	5-8	10-15	Equal	3
Empyema	14-21	21-42	Equal	2
Cystic Fibrosis Exacerbation	10-14	14-21	Equal	1
Bronchiectasis Exacerbation	8	14	Equal	1
cUTI/Pyelonephritis	5 or 7	10 or 14	Equal	13**
Intra-abd Infection	4	8-10	Equal	3
Complex Appendicitis	1-2	5-6	Equal	2 4 [†]
Bacteremia (non <i>S. aureus</i>)	7	14	Equal	4†
Cellulitis/Wound/Abscess	5-6	10	Equal	4 [‡]
Osteomyelitis	42	84	Equal	2
Osteo Removed Implant	28	42	Equal	1
Debrided Diabetic Osteo	10-21	42-90	Equal	2Φ
Septic Arthritis	14	28	Equal	1
Bacterial Meningitis (peds)	4-7	7-14	Equal	6
AECB & Sinusitis	<u><</u> 5	≥7 5-7	Equal	>25
Variceal Bleeding	2 -3		Equal	2
Neutropenic Fever	AFx72h/3 d	+ANC>500/9 d	Equal	2
Post Op Prophylaxis	0-1	1-5	Equal	2 2 57 ^Ψ
Erythema Migrans (Lyme)	7-10	14-20	Equal	3
P. vivax Malaria	7	14	Equal	1
Early Syphilis	1 IM	3 IM in 3 wks	Equal	2
Total: 24 Conditions			>	150 RCTs

You are seeing a patient in clinic with community-acquired pneumonia. What is the shortest duration of therapy to consider for this patient?

- 1. 3 days
- 2. 5 days
- 3. 7 days
- 4. 10 days

Meropenem? I suggest you order ceftriaxone and stop trying to destroy

Bill Orders Antibiotics

Questions?

Sadie.Giuliani@providence.org

