Annals 2025 *Obesity Collection*Articles You Should Know About

ACP MA Annual Meeting, September 2025

Christina C. Wee, MD, MPH, FACP Senior Deputy Editor, *Annals of Internal Medicine* Vice President, American College of Physicians

Annals of Internal Medicine®

DISCLOSURE OF FINANCIAL RELATIONSHIPS

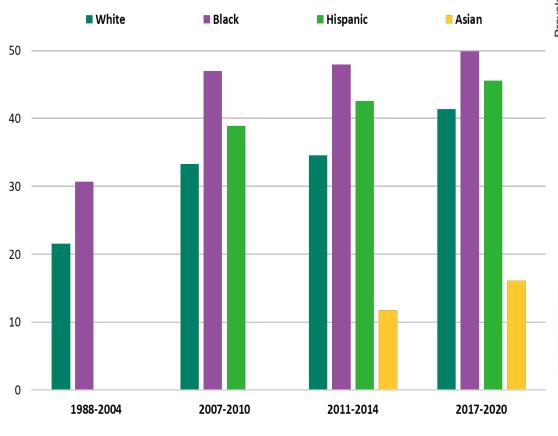
 Visit any speaker's profile on Annals.org for disclosures

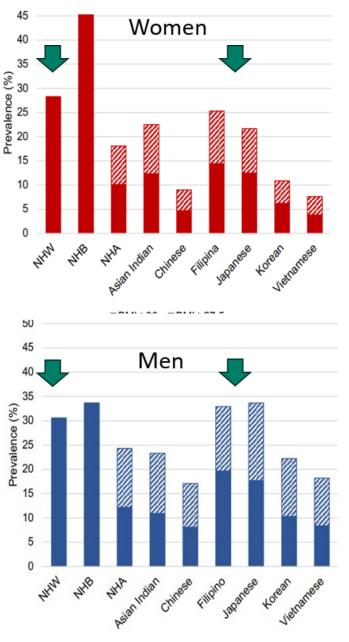
OBESITY

- A leading cause of morbidity, disability, high healthcare cost and the 2nd leading cause of preventable deaths
- Crosscuts IM specialties

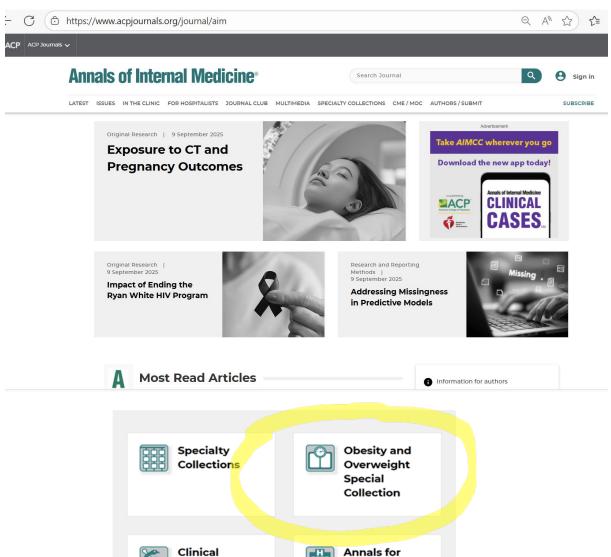
Table. BMI and Waist Circumference Thresholds for	-
Elevated Disease Risk in Adults*	

Categories	Most Populations	Asian Population†	U.S. and Canada‡
BMI, kg/m ²			
Overweight	25	23	-
Obesity	30	27.5	-
Class I	30	-	-
Class II	35	-	-
Class III	40	_	-
Waist circumference, cm)		
Men	≥94	≥85	≥102
Women	≥80	≥ 4 to 80	≥88


BMI = body mass index.


^{*} Reproduced from Gilden and colleagues (1).

[†] Refers to South Asian, Southeast Asian, and East Asian.


[‡] BMI thresholds are the same as for "Most populations."

RISING PREVALENCE OF OBESITY IN THE U.S.

50

Hospitalists

Guidelines

CRITERIA

ARTICLE SELECTION

- Published between August 2024 to August 2025
- Relevance to practice

Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit

Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

A Prospective Cohort Study

Comparison of an Energy-Reduced Mediterranean Diet and Physical Activity Versus an Ad Libitum Mediterranean Diet in the Prevention of Type 2 Diabetes

A Secondary Analysis of a Randomized Controlled Trial

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes

A Systematic Review of Randomized Controlled Trials

Improvements in Cardiometabolic Risk Factors by Weight Reduction: A Post Hoc Analysis of Adults With Obesity Randomly Assigned to Tirzepatide

Special Article

Annals of Internal Medicine

Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit

Christina C. Wee, MD, MPH; Alicia I. Arbaje, MD, MPH, PhD; Harriet Bering, MD; Linda Blount, MPH; Joshua J. Joseph, MD, MPH; Scott Kahan, MD, MPH; Caroline M. Apovian, MD; and Adrienne White-Faines, MPA

Context

ACP recognized need to address barriers to comprehensive obesity care:

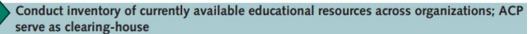
- Inadequate physician/clinician education
- Lack of alignment of health care policy and care delivery
- Need to reduce weight bias

Access Availability Outcomes Choices

Goals of Summit:

- Engage partner organizations
- Conduct a needs assessment in the 3 domains
- Identify collaborative path forward

GOALS


RECOMMENDATIONS

Physician/Clinician Education

Access to educational resources, curricula

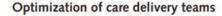
Integration of obesity care competencies into licensing and CME requirements across all relevant specialties

Ensure curricula include cultural nuances, acknowledgment of long-standing inherent biases

Identify local clinical experts/institutional champions; develop train-the-trainer programs to scale

Engage diverse community/public representatives when setting obesity care standards/priorities and developing clinician education curricula

Secure funding to develop competency testing


Clinical Care Delivery

Important to know patients as people to help address SDOH

Address learned helplessness

Improve clinician practice engagement by developing consensus around standards of care and quality metrics and providing adequate resources to support clinicians in care delivery

Increase community-patient engagement

Align health and public policy with care delivery

Consider unique issues across the lifespan/age and across care settings (clinic, hospital, assisted living/long-term care/skilled-nursing facilities, home)

Create/integrate interprofessional teams to support physicians—through shared resources, referral pathways, technology support, and telehealth

Establish pilot programs and measure outcomes at the local level to inform national standards

Shared and consistent messaging that welcomes patients and supports their care—e.g., "Obesity is a disease (medical/health condition), it's not your fault, resources and treatments are available"

Collaborate across medical societies to advocate for better reimbursement for obesity care services and on policies to improve food environment/supply of affordable healthy foods

GOALS

RECOMMENDATIONS

Reduce Weight Bias/Stigma

Patients view obesity as a disease/health condition with effective treatment and know where to go for information and care

Create welcoming practice/care environments both culturally (refrain from stigmatizing language) and physically (appropriately sized equipment, etc.)

Medical and behavioral treatments are readily available, including across a variety of medical specialties, to ensure access and choice

Collaborate with community-based organizations to amplify stigma-reducing messaging and raise awareness of health risks of obesity and availability of effective treatment

Innovative and effective interventions are readily scalable

Improve public health campaigns and broad-based messaging with an emphasis on featuring personal stories from diverse voices

Cross-Cutting Themes

Key themes centered on knowledge, advocacy, action, compassion

Need for culture change and paradigm shifts

Need for stakeholder engagement and collaboration

Facilitate empowerment

Embrace AI/technology as disruptive innovations

Adequate support/funding for research

Collaborative advocacy for health care payment reform for comprehensive obesity care Develop speakers' forum at respective societies and create a central repository shared across societies

Consider task force/commission including ACP-CSS representatives to continue the work

Medical societies and their scientific journals increase focus on obesity (e.g., special symposia, theme issues)

Foster cross-society collaborations for research or clinical engagement funding

Appendix Table 1. Selected List of ACP and ACP-CSS Activities on Obesity*

Organization	Clinical	Education	Public Policy/Advocacy	Dissemination/Other Activities
ACP	Clinical guidelines (in process)	Obesity Management Learning Series (CME series) (9) Obesity Management Conversation Tool (9) ACP/Annals Overweight and Obesity Forum (11) and other Annals-commissioned articles/features (1, 58-62) Obesity-related sessions at annual IMMs† ACP App Library for weight management apps (62) Patient education materials (9)	Collaborating with other organ- izations on quality measures related to BMI screening and follow-up ACP policy position papers on obesity-related topics (63) Congressional roundtable on obesity policy event with Rep. Dwight Evans (November 2023) Support for Medicare cover- age of obesity drugs, e.g., Treat and Reduce Obesity Act and CMS rule making	Advancing Equitable Obesity Care initiative (7) Research grants program (with AHA) Annals of Internal Medicine: Obesity and Overweight collection (compilations of all Annals articles on obesity and related topics since 2019) (10), In the Clinic (1, 57-59), Beyond the Guidelines (60), and Annals Guide to Journal Club (61) articles and patient article summaries on management of obesity and related conditions

- Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit
 - Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

 A Prospective Cohort Study

Comparison of an Energy-Reduced Mediterranean Diet and Physical Activity Versus an Ad Libitum Mediterranean Diet in the Prevention of Type 2 Diabetes

A Secondary Analysis of a Randomized Controlled Trial

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes

A Systematic Review of Randomized Controlled Trials

Improvements in Cardiometabolic Risk Factors by Weight Reduction: A Post Hoc Analysis of Adults With Obesity Randomly Assigned to Tirzepatide

Original Research

Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

A Prospective Cohort Study

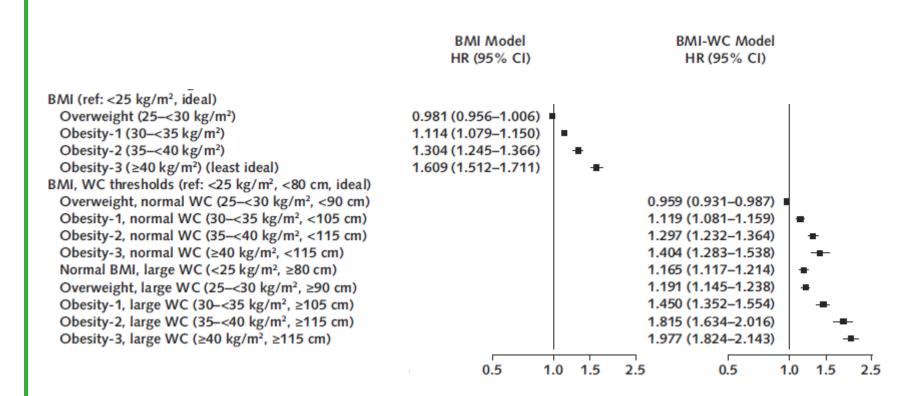
Aaron K. Aragaki, MS; JoAnn E. Manson, MD, DrPH; Erin S. LeBlanc, MD, MPH; Rowan T. Chlebowski, MD, PhD; Lesley F. Tinker, PhD; Matthew A. Allison, MD, MPH; Bernhard Haring, MD, MPH; Andrew O. Odegaard, MPH, PhD; Sylvia Wassertheil-Smoller, PhD; Nazmus Saquib, PhD, MBA; Kamal Masaki, MD; Holly R. Harris, MPH, ScD; Leah R. Jager, PhD; Jennifer W. Bea, PhD; Jean Wactawski-Wende, PhD; and Garnet L. Anderson, PhD

Does stratifying body mass index (BMI) categories by BMI-specific waist circumference (WC) thresholds improve mortality risk prediction?

IAS-ICCR Classification

BMI, kg/m ²	
Overweight	25
Obesity	30
Class I	30
Class II	35
Class III	40
Waist circumference, cm	
Men	≥94
Women	≥80

BMI, WC thresholds (ref: <25 kg/m², <80 cm, ideal)
Overweight, normal WC (25–<30 kg/m², <90 cm)
Obesity-1, normal WC (30–<35 kg/m², <105 cm)
Obesity-2, normal WC (35–<40 kg/m², <115 cm)
Obesity-3, normal WC (≥40 kg/m², <115 cm)
Normal BMI, large WC (<25 kg/m², ≥80 cm)
Overweight, large WC (25–<30 kg/m², ≥90 cm)
Obesity-1, large WC (30–<35 kg/m², ≥105 cm)
Obesity-2, large WC (35–<40 kg/m², ≥115 cm)
Obesity-3, large WC (≥40 kg/m², ≥115 cm)


Women's Health Initiative Postmenopausal women

Enrolled 1993–1998, followed through 2021

Table. Part	icipant Characteristics	Stratified b	y Cohort ($n =$	139 213)
-------------	-------------------------	--------------	------------------	----------

Characteristic	Development Cohort $(n = 67774)$	Validation Cohort 1 $(n = 48335)$	Validation Cohort $(n = 23104)$
Bacolino charactoristics			
Mean age (SD), y	63.7 (7.3)	62.9 (7.0)	63.0 (7.3)
Hispanic or Latina, n (%)*	2076 (3.1)	1/10 (3.5)	2105 (9.1)
Race, n (%)*			
American Indian/Alaska Native	150 (0.2)	134 (0.3)	144 (0.6)
Asian/Pacific Islander	2212 (3.3)	1333 (2.8)	93 (0.4)
Black/African American	4331 (6.4)	4266 (8.8)	2943 (12.7)
White	59 237 (87.4)	41 171 (85.2)	19 017 (82.3)
Multiracial/unknown	1844 (2.7)	1431 (3.0)	907 (3.9)
Clinical trial participation, n (%)	0 (0.0)	48 335 (100.0)	9015 (39.0)
Low-fat dietary trial	0 (0.0)	34 687 (71.8)	6677 (28.9)
Hormone therapy trial	0 (0.0)	19 166 (39.7)	3532 (15.3)
U.S. region, <i>n</i> (%)			
Northeast	17 229 (25.4)	11 630 (24.1)	3047 (13.2)
South	10 823 (16.0)	8160 (16.9)	16 258 (70.4)
Midwest	18 191 (26.8)	12 879 (26.6)	0 (0.0)
West	21 531 (31.8)	15 666 (32.4)	3799 (16.4)
College degree or higher, n (%)	29 643 (44.1)	18 125 (37.8)	7609 (33.2)
Prior disease status, n (%)			
No prior disease† or preexisting condition‡	34 002 (50.2)	26 425 (54.7)	11 074 (47.9)
Preexisting condition‡, no prior disease†	22 351 (33.0)	18 241 (37.7)	8835 (38.2)
Prior disease†	11 421 (16.9)	3669 (7.6)	3195 (13.8)
LE-8 BMI component, n (%)			
Normal (<25 kg/m²)	27 744 (40.9)	13 235 (27.4)	7793 (33.7)
Overweight (25-<30 kg/m²)	23 411 (34.5)	17 334 (35.9)	8047 (34.8)
Obesity-1 (30-<35 kg/m²)	10 746 (15.9)	10 820 (22.4)	4468 (19.3)
Obesity-2 (35-<40 kg/m²)	3955 (5.8)	4826 (10.0)	1860 (8.1)
Obesity-3 (≥40 kg/m²)	1918 (2.8)	2120 (4.4)	936 (4.1)

Figure 2. Hazard Ratios (HR) Predicting All-Cause Mortality in the Development Cohort (n=67,774)*

^{*}Models accounted for age, comorbidity, diet, physical activity, smoking, sleep, BP

Stratified C-Statistics (95% CI) for All-Cause Mortality Computed Biennially

Concordance vs. Time

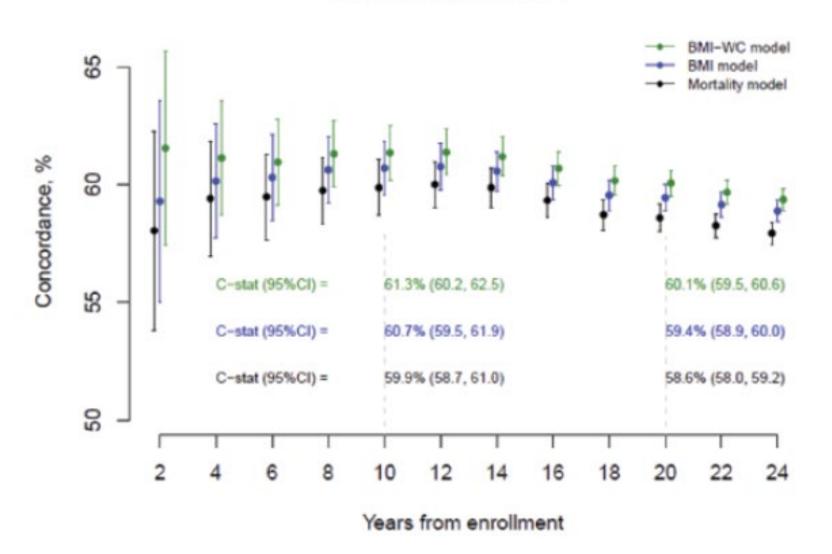
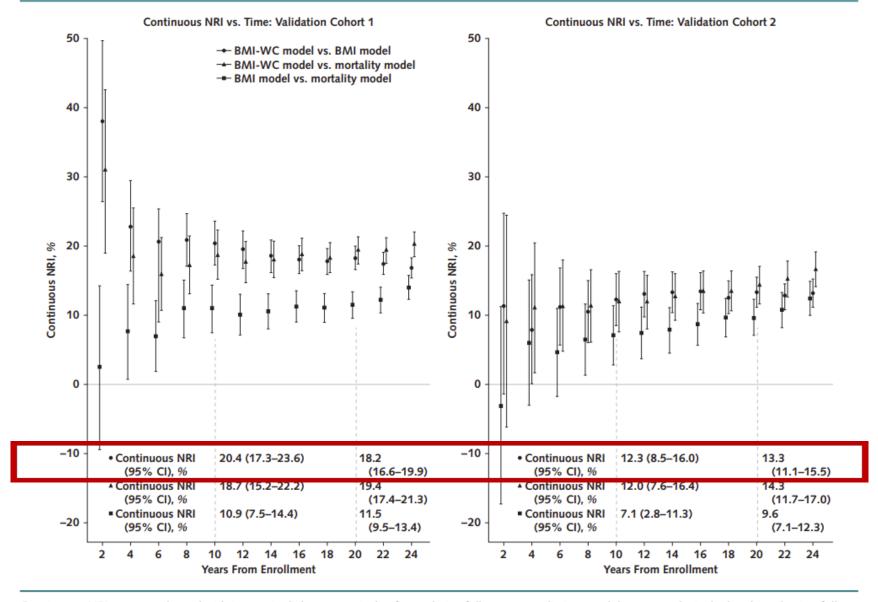



Figure 4. Continuous NRIs for all-cause mortality, computed biennially.

Continuous NRIs were evaluated with increasingly longer periods of cumulative follow-up; prediction models were exclusively developed using follow-up through 2021. Confidence intervals were estimated using the percentile method with 10 000 stratified bootstrap samples. The BMI model comprised the mortality model plus BMI categories. The BMI-WC model comprised the mortality model plus BMI categories further stratified by WC thresholds. BMI = body mass index; NRI = net reclassification improvement; WC = waist circumference.

CONCLUSION AND IMPLICATIONS

- Risk stratification with the IAS-ICCR BMI-WC framework using improves mortality risk prediction -- appropriately reclassifying individuals by approx. 20 %, though discrimination not consistent across populations
- Requires validation in younger women, men and more diverse populations
- Importantly, it needs to be incorporated in treatment trials to examine whether framework appropriately targets patients most likely to respond and derive benefit

Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit

Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

A Prospective Cohort Study

Comparison of an Energy-Reduced Mediterranean Diet and Physical Activity Versus an Ad Libitum Mediterranean Diet in the Prevention of Type 2 Diabetes

A Secondary Analysis of a Randomized Controlled Trial

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes

A Systematic Review of Randomized Controlled Trials

Improvements in Cardiometabolic Risk Factors by Weight Reduction: A Post Hoc Analysis of Adults With Obesity Randomly Assigned to Tirzepatide

What is the comparative effectiveness of an energy-reduced Mediterranean diet (erMedDiet) plus physical activity compared with a standard Mediterranean diet (MedDiet) on the incidence of type 2 diabetes?

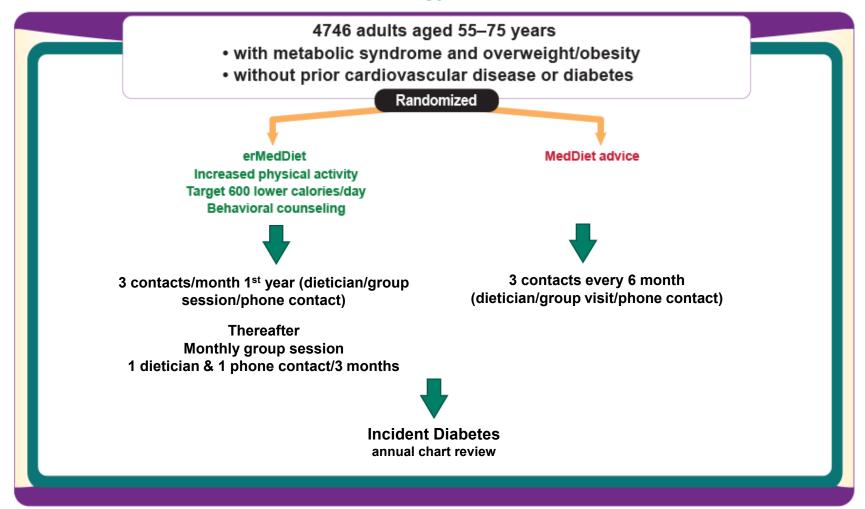
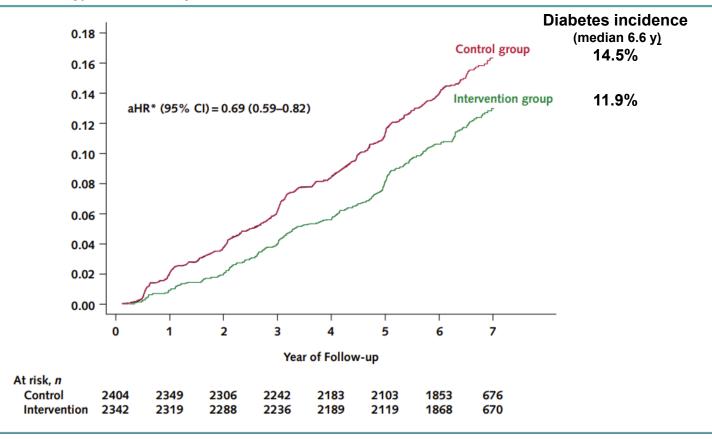



Figure 2. Cumulative incidence of type 2 diabetes by randomized arm of the PREDIMED-Plus trial.

aHR = adjusted hazard ratio; PREDIMED = Prevención con Dieta Mediterránea.

^{*} Adjusted for age, sex, and fasting glucose level (≤5.55; >5.55 to <6.11; 6.11 to <6.99; and ≥6.99 mmol/L [≤100; >100 to <110; 110 to <126; and ≥126 mg/dL]), body mass index (kg/m²), smoking status (never, former, current smoker), baseline prevalence of dyslipidemia (yes/no) and hypertension (yes/no), family history of diabetes, leisure-time physical activity level (metabolic equivalent of task minutes per day), adherence to energy-reduced MedDiet, and alcohol intake (grams per day, adding quadratic term), and stratified by center and educational level.

Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit

Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

A Prospective Cohort Study

Comparison of an Energy-Reduced Mediterranean Diet and Physical Activity Versus an Ad Libitum Mediterranean Diet in the Prevention of Type 2 Diabetes

A Secondary Analysis of a Randomized Controlled Trial

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes

A Systematic Review of Randomized Controlled Trials

Improvements in Cardiometabolic Risk Factors by Weight Reduction: A Post Hoc Analysis of Adults With Obesity Randomly Assigned to Tirzepatide

Included Studies

Search Articles of RCTs through October 2024

5152 records screened

26 RCTs of 12 GLP1 receptor agonists, including:

- Liraglutide
- Semaglutide
- Tirzepatide

Heterogeneity Across RCTs Precluded Metanalysis

Rx duration median = 43 weeks (16-106 weeks)

Comparators:

mostly included lifestyle interventions but variable intensity

Study Populations

Majority female: 72%

• Mean age: 34-57 y

Mean body weight (BMI): 87-115 kg (30-41 kg/m²)

Study quality/outcomes reported

- 22 low risk of bias
- Some reported absolute or % weight loss but not both

Forest plot of mean differences in relative body weight change with use of GLP-1 RAs versus placebo.

Study, Year (Reference)	Dose	Treatment Duration	, wk	Mean Difference (95% CI), %
Liraglutide Alba et al, 2021 (31) Neeland et al, 2021 (11) O'Neil et al, 2018 (17) Pi-Sunyer et al, 2015 (13) Wadden et al, 2020 (14) Rubino et al, 2022 (20)	3.0 mg sq qd 3.0 mg sq qd	26 40 52 56 56 68	*	-5.8 (-8.0 to -3.6) -5.4 (-7.0 to -3.7) -5.5 (-7.7 to -3.3) -5.4 (-5.8 to -5.0) -3.4 (-5.3 to -1.6) -4.5 (-7.3 to -1.7)
Semaglutide O'Neil et al, 2018 (17) McGowan et al, 2024 (18) Knop et al, 2023 (19) Rubino et al, 2022 (20) Wadden et al, 2021 (21) Wilding et al, 2021 (22) Garvey et al, 2022 (23)	0.05 mg sq qd 0.1 mg sq qd 0.2 mg sq qd 0.3 mg sq qd 0.3 mg sq qd FE 0.4 mg sq qd 0.4 mg sq qd FE 2.4 mg sq qw 50 mg po qd 2.4 mg sq qw 2.4 mg sq qw 2.4 mg sq qw 2.4 mg sq qw	52 52 52 52 52 52 52 52 68 68 68 68 68	* * * * * * * * * * * * * * * * * * * *	-3.7 (-5.9 to -1.5) -6.3 (-8.5 to -4.1) -9.3 (-11.5 to -7.1) -8.9 (-11.1 to -6.7) -9.1 (-11.3 to -6.9) -11.6 (-13.7 to -9.4) -12.7 (-14.2 to -11.3) -13.9 (-16.7 to -11.0) -10.3 (-12.0 to -8.6) -12.4 (-13.4 to -11.5) -12.6 (-15.3 to -9.8)
Tirzepatide Jastreboff et al, 2022 (24) Jastreboff et al, 2022 (24) Jastreboff et al, 2022 (24)	5 mg sq qw 10 mg sq qw 15 mg sq qw	72 72 72 73	サ サ Percentage	-11.9 (-13.4 to -10.4) -16.4 (-17.9 to -14.8) -17.8 (-19.3 to -16.3)

				1
Beinaglutide Chen et al, 2024 (25)	0.2 mg sq tid	16		-3.6 (-4.6 to -2.6)
Chen et al, 2024 (25)	0.2 mg sq tiu	10	_	-3.6 (-4.6 to -2.6)
Efpeglenatide				
Pratley et al, 2019 (26)	4 mg sq qw	20	+	-6.8 (-8.4 to -5.1)
Pratley et al, 2019 (26)	6 mg sq qw	20	-	-7.4 (-9.1 to -5.7)
Pratley et al, 2019 (26)	6 mg sq q2w	20	-	-6.7 (-8.4 to -5.1)
Pratley et al, 2019 (26)	8 mg sq q2w	20	-	-7.5 (-9.2 to -5.8)
. ratioy of all, 2015 (20)	o 8 34 42 11			7.5 (5.2 to 5.5)
Noiiglutide				
Li et al. 2024 (29)	0.12 mg sq qd	24	-	-5.8 (-7.8 to -3.9)
Li et al, 2024 (29)	0.24 mg sq qd	24	-	-5.0 (-7.0 to -3.1)
Li et al, 2024 (29)	0.36 mg sq qd	24	-	-5.4 (-7.4 to -3.4)
	0 1 1			, , , , , , , , , , , , , , , , , , , ,
JNJ-64565111				
Alba et al, 2021 (31)	5.0 mg sq qw	26	-	-6.7 (-9.3 to -4.2)
Alba et al, 2021 (31)	7.4 mg sq qw	26	-	–8.1 (–10.3 to –5.8)
Alba et al, 2021 (31)	10 mg sq qw	26	-	–10.0 (–12.3 to –7.8)
Mazdutide				
Ji et al, 2023 (32)	3 mg sq qw	24	-	-7.7 (-9.5 to -5.9)
Ji et al, 2023 (32)	4.5 mg sq qw	- 24	-	-11.4 (-13.2 to -9.6)
Ji et al, 2023 (32)	6 mg sq qw	24	-	–12.3 (–14.1 to –10.5)
		٦		
Compadutida				
Survodutide	2.4	10		0.0 / 44.7 to (2)
Jungnik et al, 2023 (33)	2.4 mg sq qw	16	-	-9.0 (-11.7 to -6.3)
Jungnik et al, 2023 (33)	4.8 mg sq qw	16		-11.2 (-14.0 to -8.5)
Jungnik et al, 2023 (33)	2.4 mg sq biw	16		-13.8 (-16.5 to -11.1)
le Roux et al. 2024 (34)	0.6 mg sq qw	46		-3.4 (-6.3 to -0.4)
le Roux et al. 2024 (34)	2.4 mg sq qw	46		-9.7 (-12.6 to -6.8)
le Roux et al, 2024 (34)	3.6 mg sq qw	46		-10.4 (-13.3 to -7.5)
le Roux et al, 2024 (34)	4.8 mg sq qw	46		–12.1 (–15.0 to –9.2)
Retatrutide				
Jastreboff et al. 2023 (35)	1 mg sq qw	48	-	-6.6 (-8.9 to -4.2)
Jastreboff et al, 2023 (35)	4 mg sq qw	48	-	-14.2 (-17.6 to -10.8)
Jastreboff et al. 2023 (35)	4 mg sq qw FE	48	-	_15.7 (_19.1 to _12.4)
Jastreboff et al. 2023 (35)	8 mg sq qw	48		-19.6 (-22.7 to -16.5)
Jastreboff et al, 2023 (35)	8 mg sq qw FE	48	←	-21.8 (-25.1 to -18.5)
Jastreboff et al, 2023 (35)	12 mg sq qw	48		-22.1 (-24.9 to -19.3)
7.00 of all 2023 (33)	g 54 417	40		2211 (2315 to 1515)
			1 2 1 2	
			30 30 30 30 SO	S 59
			Percentage	

GLP-1 RAs Reduced Waist circumference, BP

- GLP 1RAs reduced waist circumference and BP
- Side effects were common (mostly GI) but transient
 - associated with dose escalation
 - uncommonly led to Rx discontinuation (most <10%)
 - few deaths: 15 in GLP1RA vs. 7 in control, most deemed unrelated (not enough info provided in few studies)

Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit

Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

A Prospective Cohort Study

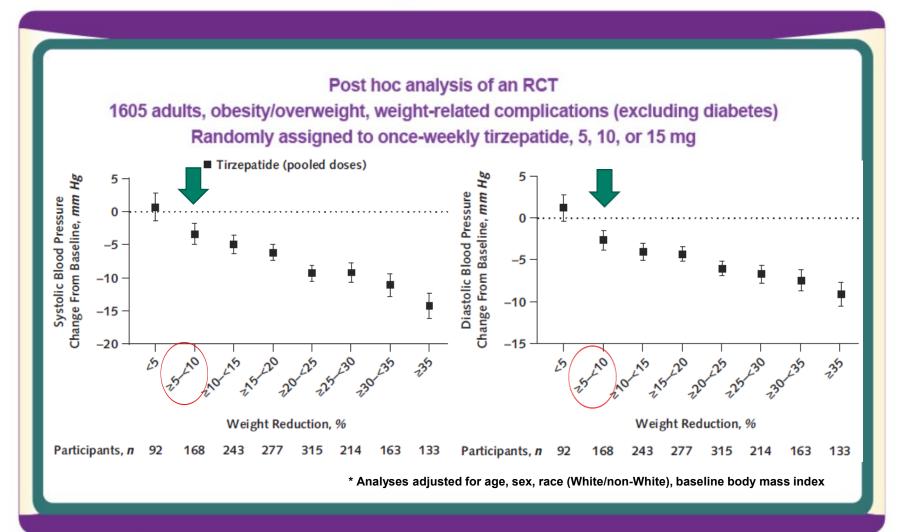
Comparison of an Energy-Reduced Mediterranean Diet and Physical Activity Versus an Ad Libitum Mediterranean Diet in the Prevention of Type 2 Diabetes

A Secondary Analysis of a Randomized Controlled Trial

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes

A Systematic Review of Randomized Controlled Trials

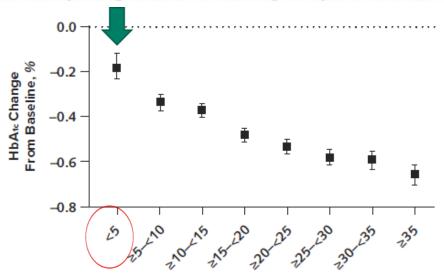
Improvements in Cardiometabolic Risk Factors by Weight Reduction: A Post Hoc Analysis of Adults With Obesity Randomly Assigned to Tirzepatide


Post hoc analysis of an RCT

1605 adults, obesity/overweight, weight-related complications (excluding diabetes)
Randomly assigned to once-weekly tirzepatide, 5, 10, or 15 mg

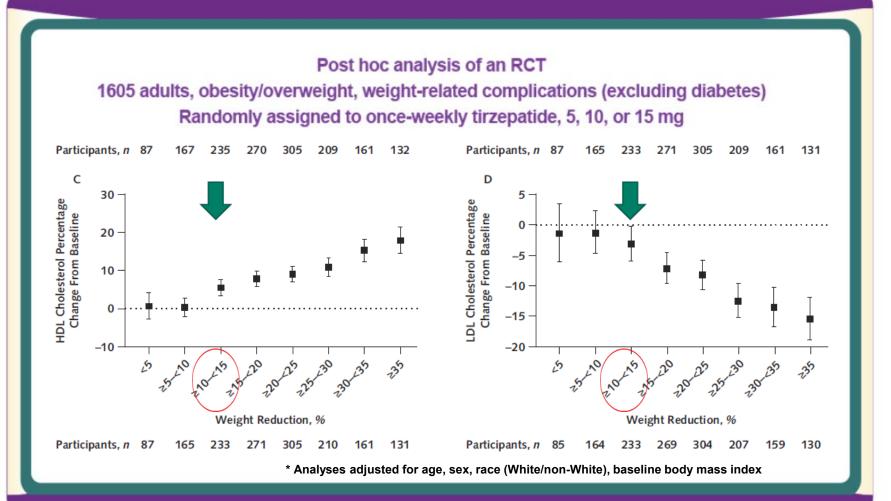
Mean Difference in % Weight Loss between Tirzepatide vs. Placebo: Results from Parent RCT (SURMOUNT-1)*

	Dose	Treatment Durat	ion, <i>wk</i>	Mean Difference (95% CI), %
Tirzepatide Jastreboff et al, 2022 (24) Jastreboff et al, 2022 (24) Jastreboff et al, 2022 (24)	5 mg sq qw 10 mg sq qw 15 mg sq qw	72 72 72	± *	-11.9 (-13.4 to -10.4) -16.4 (-17.9 to -14.8) -17.8 (-19.3 to -16.3)
			25,20,45,050	5 %
*Moiz et	al. Ann Intern Med 2	2025	Percentage	



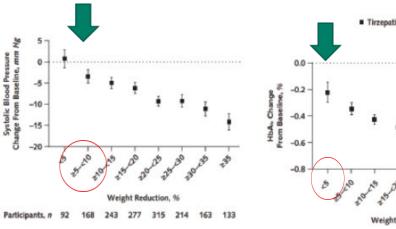
Post hoc analysis of an RCT

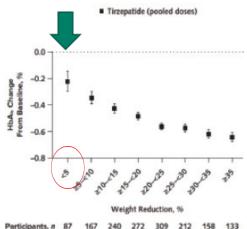
1605 adults, obesity/overweight, weight-related complications (excluding diabetes)
Randomly assigned to once-weekly tirzepatide, 5, 10, or 15 mg

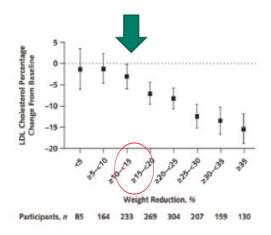


Weight Reduction, %

Participants, n 87 167 240 272 309 212 158 133


* Analyses adjusted for age, sex, race (White/non-White), baseline body mass index





Post hoc analysis of an RCT 1605 adults, obesity/overweight, weight-related complications (excluding diabetes) Randomly assigned to once-weekly tirzepatide, 5, 10, or 15 mg

Go to Annals.org for additional cardiometabolic risk factor results.

SUMMARY AND IMPLICATIONS

- Obesity remains a prevalent health challenge that crosscuts IM specialties
 - More work to be done to improve clinician education, align healthcare policy and care delivery, reduce weight bias
 - ACP has available resources, is leading efforts to foster comprehensive care
- Current measures to define obesity remain crude
 - Need for refinement and validation of diagnosis and treatment criteria
- Effective pharmacologic therapies are available with even more promising agents on the horizon, but long-term safety data needed
- Weight loss treatment thresholds may need to vary depending on metabolic outcomes targeted

Unifying Efforts to Empower Equitable Obesity Care: Synopsis of an American College of Physicians and Council of Subspecialty Societies Summit

Development and Validation of Body Mass Index-Specific Waist Circumference Thresholds in Postmenopausal Women

A Prospective Cohort Study

Comparison of an Energy-Reduced Mediterranean Diet and Physical Activity Versus an Ad Libitum Mediterranean Diet in the Prevention of Type 2 Diabetes

A Secondary Analysis of a Randomized Controlled Trial

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes

A Systematic Review of Randomized Controlled Trials

Improvements in Cardiometabolic Risk Factors by Weight Reduction: A Post Hoc Analysis of Adults With Obesity Randomly Assigned to Tirzepatide

QUESTIONS?