

Repurposing SGLT2 Inhibitors for Rhythm Control After AF Ablation: Evidence from a Meta-Analysis

Presenter: Dr. Mahnam Khizer

Background

- AF is the most common sustained arrhythmia and a major contributor to morbidity, mortality and healthcare burden [1].
- Rhythm control is important for these patients however, previous research has indicated that antiarrhythmic drug therapy for the maintenance of sinus rhythm in AF patients is limited by the toxic side effects [1].
- Catheter ablation has become the first-line option for symptomatic AF patients who do not respond to drug therapy [2].
- Catheter ablation improves rhythm control but up to 40% of patients still experience AF recurrence within one year [2].
- Sodium-glucose cotransporter-2 inhibitors (SGLT2i), originally introduced for glucose lowering, have demonstrated additional cardiovascular benefits including natriuresis, anti-inflammatory and antifibrotic effects and improved myocardial metabolism [3,4].

Objectives

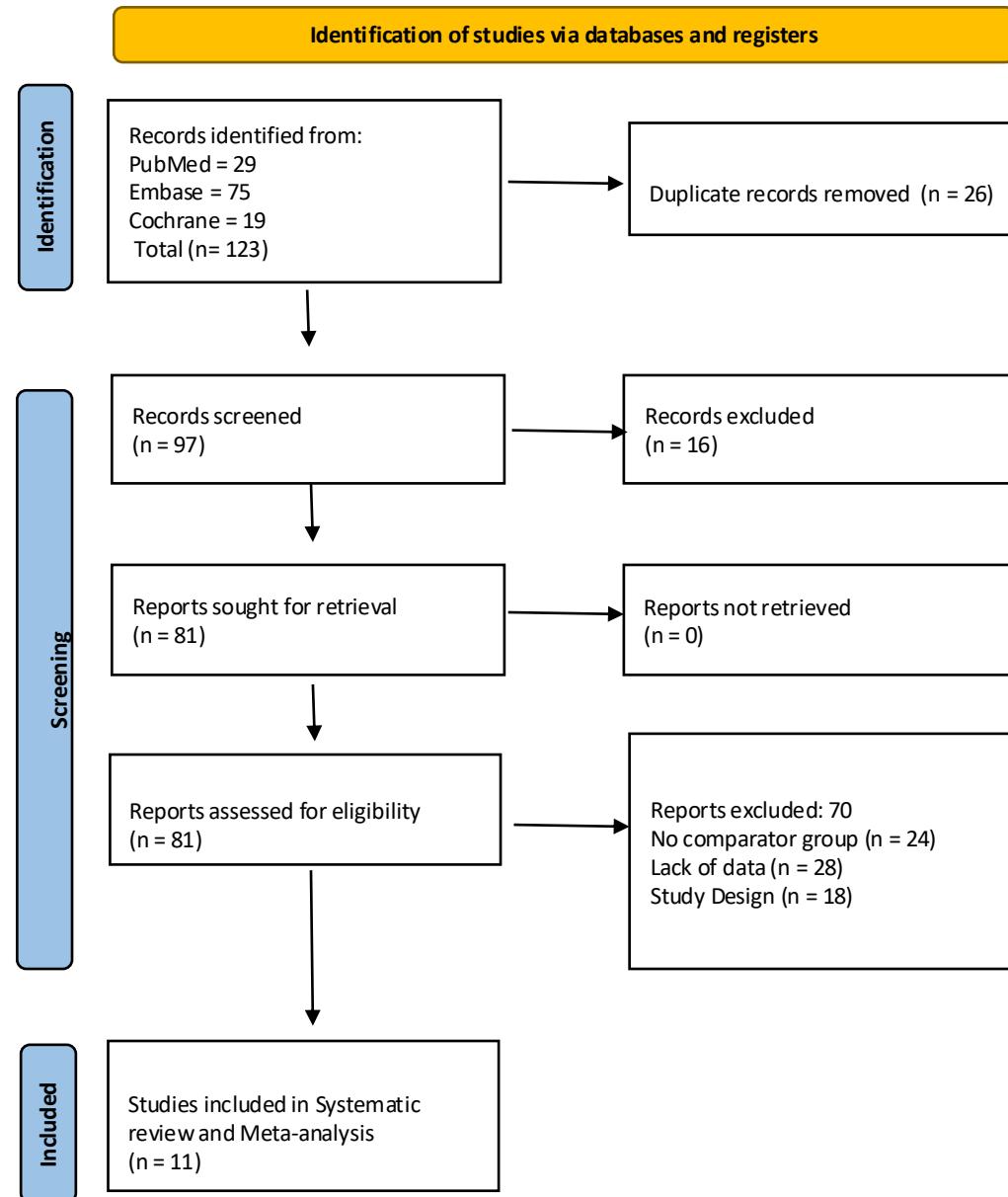
- Emerging evidence suggests these SGLT2i agents may also reduce AF recurrence after ablation, although the strength of this association and consistency across patient subgroups remain uncertain.
- To address this gap, we performed a systematic review and meta-analysis to determine whether SGLT2 inhibitor therapy is linked to a lower risk of post-ablation AF recurrence.

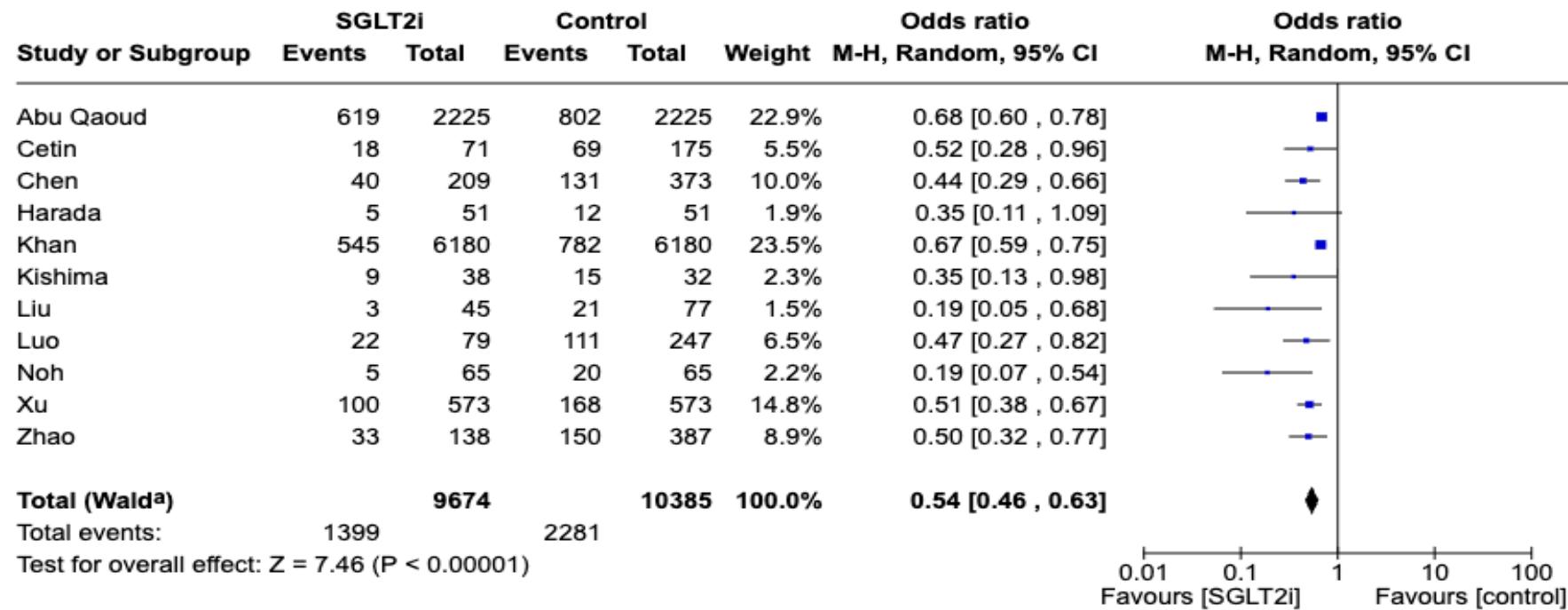
Methods

- The literature search, inclusion criteria, data extraction, and analyses in this study were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
- Electronic databases including PubMed, Embase and Cochrane Library were searched from inception to August 2025.
- The primary outcome was AF recurrence at the longest follow-up. When reported, both hazard ratios (HRs) and risk/odds ratios (RRs/ORs) were extracted. Effect estimates were pooled using a random-effects model to account for clinical and methodological heterogeneity across studies. For studies reporting raw event counts, risk ratios were calculated directly. For studies providing HRs or adjusted HRs, the generic inverse-variance method was applied.
- Heterogeneity was assessed with I^2 and Tau^2 where where $I^2 > 50\%$ indicated a high heterogeneity between studies while $I^2 < 50\%$ considered small or non-significant heterogeneity between studies.

Study Selection

- Inclusion Criteria:
 1. Randomized controlled trials or observational cohort studies
 2. Comparing SGLT2 inhibitor therapy vs control (no SGLT2i)
 3. Conducted in adult patients (≥ 18 years)
 4. Undergoing catheter ablation for atrial fibrillation
 5. Including paroxysmal, persistent, or long-standing persistent AF
 6. AF recurrence was defined as an episode of atrial tachyarrhythmia lasting ≥ 30 seconds occurring after the 3-month post-ablation period.
- Exclusion Criteria:
 1. No comparator group.
 2. No post-ablation rhythm outcomes.
 3. Pediatric populations.
 4. Non-ablation AF management studies.
 5. Reviews, abstracts, case reports or non-extractable data.



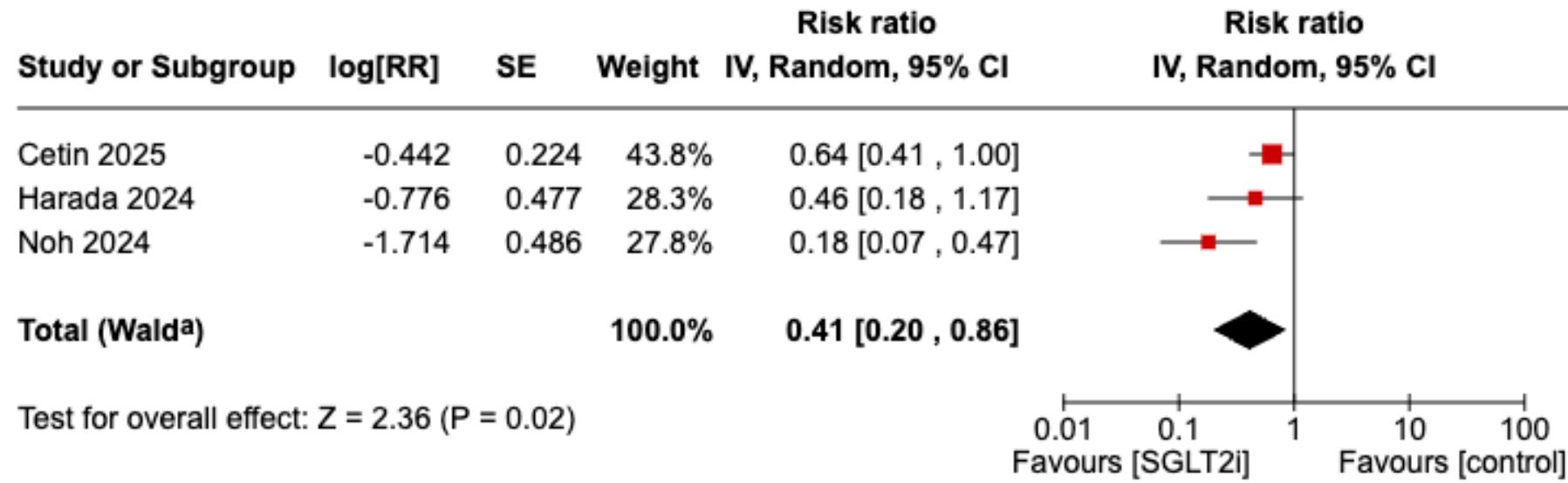

Figure 1. PRISMA Flow Chart

STUDY	STUDY DESIGN	TYPE OF SGLT2i	SAMPLE SIZE		AGE (MEAN \pm SD) SGLT2i	FEMALE % SGLT2i	HEART FAILURE % SGLT2i		DIABETES % SGLT2i	FOLLOW-UP (MONTHS)
			SGLT2i	SD) SGLT2i			% SGLT2i	SGLT2i		
HARADA 2024 [5]	RCT	Empagliflozin	51		72.0 \pm 8.3	35.2	100	0	12	
		Dapagliflozin								
XU 2025 [6]	Retrospective cohort	Empagliflozin	573		63.6 \pm 9.7	28	48.3	90	20	
		Dapagliflozin								
CHEN 2025 [3]	Retrospective cohort	Empagliflozin	209		60.8 \pm 9.9	40.7	18.7	17.2	12	
		Dapagliflozin								
CETIN 2025 [7]	Retrospective cohort	Empagliflozin	71		65.1 \pm 7.9	39.4	NR	36.6	11.5	
		Dapagliflozin								
KHAN 2025 [2]	Retrospective cohort	Canagliflozin	6180		68.7 \pm 8.3	29	60.9	100	12	
		Dapagliflozin								
NOH 2024 [8]	Retrospective cohort	Empagliflozin								
		Dapagliflozin	73		72.19 \pm 5.45	73.5	NR	38	18	
LUO F 2024 [9]	Retrospective cohort	Dapagliflozin	79		63.7 \pm 10	41.1	NR	100	15.5	
ABU QAOUD 2023 [1]	Retrospective cohort	-	2225		65 \pm 9	26	60	100	12	
LIU 2023 [10]	Retrospective cohort	Empagliflozin	45		60.1 \pm 10.6	22	26	100	33.7	
		Canagliflozin								
ZHAO 2023 [11]	Retrospective cohort	Dapagliflozin								
		Canagliflozin	138		63.9 \pm 8.7	29	21	100	18	
KISHIMA 2022 [12]	RCT	Dapagliflozin								
		Tofogliflozin								
KISHIMA 2022 [12]	RCT	Empagliflozin								
		Tofogliflozin	38		70.3 \pm 8.6	32	27	100	12	

Table 1. Baseline Characteristics of the included studies.

- 11 studies were included, comprising 19,059 patients.
- 9,674 patients received an SGLT2 inhibitor.
- Mean age across studies ranged from 60 to 72 years.
- Women accounted for 25% to 74% of participants.
- Diabetes prevalence varied between 0% and 68%.
- Median follow-up duration across studies was approximately 11–12 months.

Results

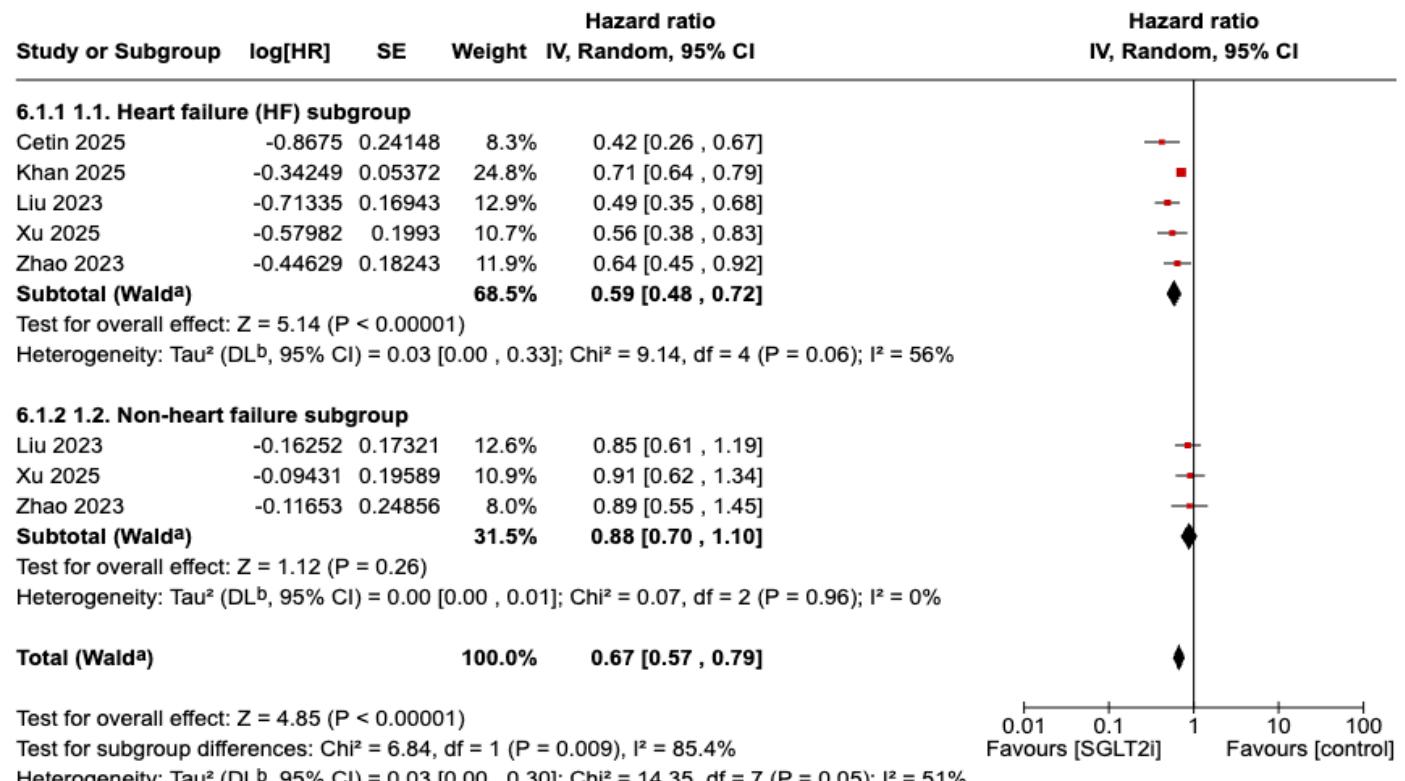

Footnotes

^aCI calculated by Wald-type method.

^b τ^2 calculated by DerSimonian and Laird method.

Figure 2. Forest plot of AF recurrence rate between SGLT2i and control group. SGLT2 inhibitors had 46% lower odds of AF recurrence compared to controls.

Results


Footnotes

^aCI calculated by Wald-type method.

^bTau² calculated by Restricted Maximum-Likelihood method.

Figure 3. This forest plot represents a meta-analysis of non-diabetic patients receiving SGLT2 inhibitors vs no SGLT2 inhibitors after catheter ablation for atrial fibrillation (AF). SGLT2 inhibitors reduce the risk of AF recurrence by ~59% after ablation in non-diabetic patients.

Results

Footnotes

^aCI calculated by Wald-type method.

^bTau² calculated by DerSimonian and Laird method.

Figure 4. Effect of SGLT2 inhibitors on atrial fibrillation recurrence after catheter ablation stratified by heart failure status. This demonstrates significant reduction in AF recurrence among patients with heart failure treated with SGLT2 inhibitors (HR 0.59, 95% CI 0.48-0.72; P < 0.00001), while no significant effect was observed in patients without heart failure (HR 0.88, 95% CI 0.70-1.10; P = 0.26). The interaction test indicated a statistically significant subgroup difference (P = 0.009), suggesting that the therapeutic benefit of SGLT2 inhibitors is predominantly confined to patients with heart failure.

Results

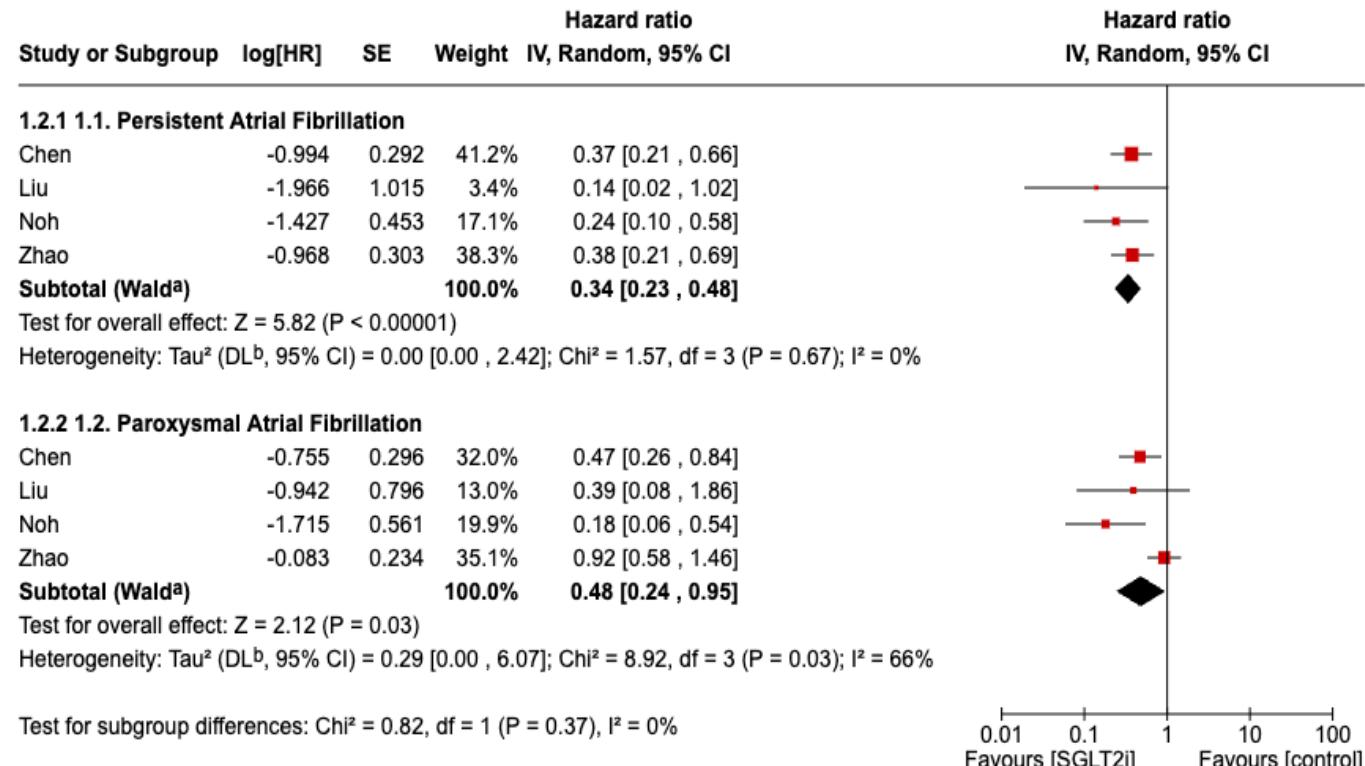


Figure 5. Forest plot of AF recurrence between SGTL2i and control group based on AF type. Subgroup analyses showed benefit in persistent AF (HR 0.34, 95% CI 0.23–0.48; P < 0.00001; I² = 0%) and paroxysmal AF (HR 0.48, 95% CI 0.24–0.95; P = 0.03; I² = 66%).

Results

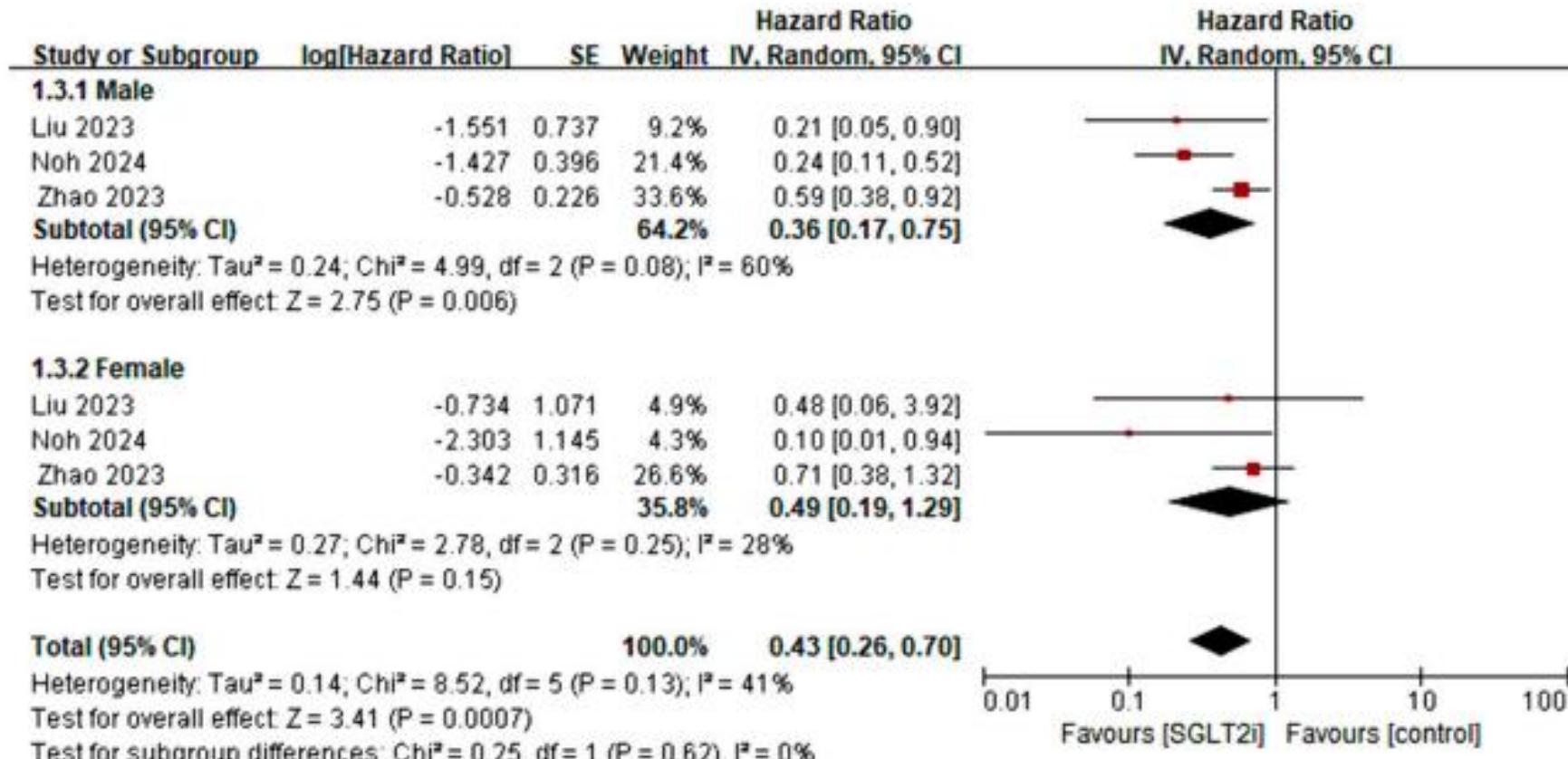


Figure 6. Forest plot of AF recurrence between SGTL2i and control group based on sex. A significant effect was observed in males (HR 0.36, 95% CI 0.17–0.75; $P = 0.006$), while the reduction in females was not statistically significant (HR 0.49, 95% CI 0.19–1.29; $P = 0.15$).

Risk of bias assessment

Included studies	Selection (0-4 points)				Comparability (0-2 points)		Outcome (0-3 points)			Total points
	Exposed cohort	Non-exposed cohort	Ascertainment of exposure	Outcome of interest	Adjust for the important risk factors	Adjust for other risk factors	Assessment of outcomes	Follow up length	Loss to follow-up rate	
Khan 2025	*	*	*	*	*	*	*	*	*	9
Xu 2025	*	*	*	*	*	*	*	*	*	9
Zhao 2023	*	*	*	*	*		*	*	*	8
Abu Qaoud 2023	*	*	*		*	*		*	*	7
Chen 2025	*	*	*	*		*	*	*	*	8
Cetin 2025	*	*	*	*			*	*	*	7
Liu 2023	*	*	*	*	*		*	*	*	8
Noh 2024	*	*	*	*	*		*	*	*	8
Luo 2024	*	*	*	*	*			*	*	7

Table 2. Risk of bias assessment for included observational studies using the Newcastle-Ottawa Scale (NOS). The NOS evaluates study quality across three domains; selection of participants (0-4 points), comparability of study groups (0-2 points) and outcome assessment (0-3 points) with a maximum score of 9 indicating highest methodological rigor. Most studies demonstrated high-quality design (scores ≥ 7), reflecting appropriate cohort selection, adequate adjustment for confounding variables, objective outcome assessment and sufficient follow-up duration.

Risk of bias assessment

Intention-to-treat	Unique ID	Study ID	Experimental	Comparator	Outcome	Weight	Risk of bias assessment					Overall
							D1	D2	D3	D4	D5	
	Harada 2024	1.1	SGLT2i	Control	AF recurrence	0.019	+	!	!	+	+	!
	Kishima 2022	1.2	SGLT2i	Control	AF recurrence	0.023	+	!	+	+	+	+

Legend:

- Green circle with '+' icon: Low risk
- Yellow circle with '!' icon: Some concerns
- Red circle with '-' icon: High risk

Domain Definitions:

- D1: Randomisation process
- D2: Deviations from the intended interventions
- D3: Missing outcome data
- D4: Measurement of the outcome
- D5: Selection of the reported result

Figure 7. Risk-of-bias assessment using the ROB-2 tool for included randomized controlled trials. Domains related to randomization, outcome measurement and reporting showed predominantly low risk of bias while minor concerns persisted in deviations from intended interventions and missing outcome data, resulting in an overall judgment of some concerns.

Discussion

- Meta-analysis of 11 studies (19,059 patients) showed SGLT2 inhibitors reduce AF recurrence by 46% after ablation supporting an emerging role for these agents beyond glycemic regulation.
- SGLT2 inhibitors promote natriuresis and reduce cardiac filling pressures which help decrease atrial stretch and lower the likelihood of triggering arrhythmias [10].
- Due to the anti-inflammatory and antifibrotic properties of SGLT2 inhibitors, this may reduce structural changes in atrial tissue, a key contributor to AF recurrence [11]. Together, these effects support the biological plausibility of the reduced recurrence rates observed in our pooled data.
- One of the most notable findings was the substantial benefit in non-diabetic patients who experienced a reduction in recurrence similar to those with diabetes. This indicates that the effects of SGLT2 inhibitors extend well beyond glucose lowering and likely stem from broader cardiovascular benefits. Another study also observed improvements in arrhythmia outcomes independent of diabetic status reinforcing this therapeutic benefit [3].

Discussion

- Patients with heart failure showed a marked reduction in AF recurrence when treated with SGLT2 inhibitors. The significant interaction observed in our analysis suggests that the hemodynamic and metabolic effects of SGLT2 inhibitors may be particularly relevant in the setting of impaired ventricular function. Similar findings were reported in another study with improved rhythm outcomes in heart failure patients undergoing catheter ablation[7].
- Patients with persistent AF experienced greater improvement compared with those with paroxysmal AF. This aligns with the concept that persistent AF is more strongly driven by structural remodeling and fibrosis processes that SGLT2 inhibitors may help mitigate [4]. These findings suggest that patients with more advanced atrial disease may derive the greatest advantage from this therapy.
- Men experienced a statistically significant reduction in AF recurrence whereas the effect in women did not reach significance. Although the reasons for this are unclear, it may relate to differences in atrial substrate or hormonal influences. Another study also reported stronger responses in male cohorts which is consistent with our findings [13]. However, further studies are needed to better understand this discrepancy.

Despite these promising results, several limitations must be acknowledged:

- Most of the included studies were retrospective or cohort-based, which introduces the possibility of residual confounding and selection bias despite adjustment for known variables.
- Definitions of AF recurrence, methods of detection, and follow-up duration varied considerably across studies contributing to the observed heterogeneity.
- Randomized controlled trials were limited and therefore, larger prospective trials are necessary to validate these associations and to more precisely identify patient groups that may derive the greatest therapeutic advantage.

- The overall findings suggest that SGLT2 inhibitors may serve as an effective adjunct therapy to improve rhythm outcomes after AF ablation.
- Even though most studies were observational, the consistent findings and large number of patients make the results reliable and clinically meaningful.

References

1. Abu-Qaoud MD, Kumar A, Tarun T, Abraham S, Ahmad J, Khadke S, Husami R, Kulbak G, Sahoo S, Januzzi Jr JL, Neilan TG. Impact of SGLT2 inhibitors on AF recurrence after catheter ablation in patients with type 2 diabetes. *Clinical Electrophysiology*. 2023 Oct 1;9(10):2109-18.
2. Khan A, Shabbir MR, Asghar T, Nasrallah J, Ali KM, Asghar M, Aslam R, Imtiaz M, Akbar UA, Bates MG, Ahmed R. Effect of SGLT2 inhibitors on atrial fibrillation recurrence after catheter ablation in patients with type 2 diabetes in the United States: a TriNetX database study. *Journal of Interventional Cardiac Electrophysiology*. 2025 Oct 24:1-7.
3. Chen Z, Zhang L, Chen F, Han Z, Xu W. Correction: SGLT2 inhibitor reduces atrial tachyarrhythmia recurrence post-cryoballoon ablation: a prospective observational cohort study in patients with and without diabetes. *BMC Cardiovascular Disorders*. 2025 Oct 21;25:752.
4. Qi D, Guan X, Liu X, Liu L, Liu Z, Zhang J. Relationship between sodium-glucose cotransporter 2 inhibitors and atrial fibrillation recurrence after pulmonary vein isolation in patients with type 2 diabetes and persistent atrial fibrillation. *Journal of Cardiovascular Electrophysiology*. 2024 Sep;35(9):1799-805.
5. Harada M, Motoike Y, Nomura Y, Nishimura A, Koshikawa M, Watanabe E, Ozaki Y, Izawa H. Impact of sodium-glucose cotransporter 2 inhibitors on catheter ablation for atrial fibrillation in heart failure patients without type-2 diabetes. *International Journal of Cardiology*. 2025 Mar 1;422:132954.
6. Xu Y, Zhao Z, Xu H, Jiang C, Wang X, Yang Z, Shao W, Guo H, He L, Guo Q, Sang C, Long D, Du X, Dong J, Ma C. Impact of Sodium-Glucose Cotransporter 2 Inhibitor on Recurrence After Catheter Ablation for Atrial Fibrillation in Patients With or Without Metabolic Syndrome. *J Cardiovasc Electrophysiol*. 2025 Sep 3. doi: 10.1111/jce.70073. Epub ahead of print. PMID: 40899142.
7. Cetin EH, Cetin MS, Könte HC, Ülvan N, Çelik EM, Arslan K, Kocigit D, Korkmaz A, Ozcan F, Ozeke O, Cay S. The Impact of SGLT2 Inhibitors on Atrial Fibrillation Recurrence and Long-Term Clinical Outcomes in HFrEF Patients Undergoing Cryoballoon Ablation: A New Frontier Beyond Diabetes and Heart Failure. *Journal of Cardiovascular Electrophysiology*. 2025 May;36(5):952-60.
8. Noh HJ, Cha SJ, Kim CH, Choi SW, Lee CH, Hwang JK. Efficacy of dapagliflozin in improving arrhythmia-related outcomes after ablation for atrial fibrillation: a retrospective single-center study. *Clinical Research in Cardiology*. 2024 Jun;113(6):924-32.
9. Luo F, Sun L, Wang Z, Zhang Y, Li J, Chen Y, Dong J. Effect of dapagliflozin on the outcome of radiofrequency catheter ablation in patients with type 2 diabetes mellitus and atrial fibrillation. *Cardiovascular Drugs and Therapy*. 2024 Feb;38(1):91-8.
10. Liu HT, Wo HT, Chang PC, Lee HL, Wen MS, Chou CC. Long-term efficacy of sodium-glucose cotransporter 2 inhibitor therapy in preventing atrial fibrillation recurrence after catheter ablation in type 2 diabetes mellitus patients. *Heliyon*. 2023 Jun 1;9(6).
11. Zhao Z, Jiang C, He L, Zheng S, Wang Y, Gao M, Lai Y, Zhang J, Li M, Dai W, Zuo S. Impact of sodium-glucose cotransporter 2 inhibitor on recurrence after catheter ablation for atrial fibrillation in patients with diabetes: a propensity-score matching study and meta-analysis. *Journal of the American Heart Association*. 2023 Dec 19;12(24):e031269.
12. Kishima H, Mine T, Fukuwara E, Kitagaki R, Asakura M, Ishihara M. Efficacy of sodium-glucose cotransporter 2 inhibitors on outcomes after catheter ablation for atrial fibrillation. *Clinical Electrophysiology*. 2022 Nov 1;8(11):1393-404.
13. Fichadiya A, Quinn A, Au F, Campbell D, Lau D, Ronksley P, Beall R, Campbell DJ, Wilton SB, Chew DS. Association between sodium-glucose cotransporter-2 inhibitors and arrhythmic outcomes in patients with diabetes and pre-existing atrial fibrillation. *Europace*. 2024 Mar;26(3):euae054.

Thank you