The Risk for Myocardial Infarction with Cyclooxygenase-2 Inhibitors: A Population Study of Elderly Adults

Linda E. Lévesque, BScPhm, MSc; James M. Brophy, MD, PhD; and Bin Zhang, MSc

Background: Cyclooxygenase-2 (COX-2) selective inhibitors have been marketed since 1999 as safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). Debate about their cardiac safety has culminated in the recent withdrawal of rofecoxib. Additional studies are needed to better understand this risk and to determine whether this safety concern represents a class effect.

Objective: To assess the influence of various NSAIDs on the risk for a first myocardial infarction (MI).

Design: Population-based, retrospective cohort study analyzed using a time-matched, nested case-control approach.

Setting: Québec, Canada.

Participants: 113,927 elderly persons without previous MI and newly treated with an NSAID between 1 January 1999 and 30 June 2002.

Measurements: NSAID exposure and occurrence of MI assessed by using Québec’s administrative health databases.

Results: Compared with no use of NSAIDs in the year preceding the event, current use of rofecoxib was associated with an increased risk for an acute MI (rate ratio [RR], 1.24 [95% CI, 1.05 to 1.46]) that was more pronounced at higher doses (RR, 1.73 [CI, 1.09 to 2.76]). The concomitant use of aspirin appears to decrease the risk associated with low-dose rofecoxib (RR, 1.00 [CI, 0.77 to 1.28]) but not with high-dose rofecoxib (RR, 2.36 [CI, 1.27 to 4.39]). No increased risks were observed with celecoxib (RR, 0.99 [CI, 0.85 to 1.16]) or the other NSAIDs.

Limitations: The study could not completely account for all potential confounders, including over-the-counter use of aspirin and ibuprofen.

Conclusions: These results provide evidence of an increased risk for acute MI in current users of rofecoxib among elderly persons with no history of MI. This risk appears greater at higher doses. Aspirin use mitigates the risk associated with low-dose but not high-dose rofecoxib. There was no evidence of an increased risk with the other NSAIDs.
Risk for Myocardial Infarction with COX-2 Inhibitors

5 April 2005
Annals of Internal Medicine

Hospital, McGill University, approved the study.

d’acce`s a` l’information du Que´bec) and the Royal Victoria

individual. The ethics boards of Que´bec (Commission

represented in these databases by an encrypted unique

on all deaths, including date and cause. Each resident is

5) the vital statistics database, which provided information

and an indicator of hospital mortality when applicable; and

primary diagnosis, and up to 15 secondary diagnoses codes,

izations, including date of admission and discharge,

puterized health insurance and vital statistics databases of

entered, and dispensing date; 3) the medical services database,

exposure in the year preceding the index date (ever use). Indi-

identified a priori, was current use. However, we also evaluated

the date and nature of service, with diagnostic codes, location-

the hospitalization database, which provided information on all hospital-

primary diagnosis, and up to 15 secondary diagnoses codes, and an indicator of hospital mortality when applicable; and

the vital statistics database, which provided information on all deaths, including date and cause. Each resident is

in these databases by an encrypted unique identifier that enables record linkage at the level of the individual. The ethics boards of Que´bec (Commission
d’acces à l’information du Que´bec) and the Royal Victoria

Hospital, McGill University, approved the study.

Article
Risk for Myocardial Infarction with COX-2 Inhibitors

Context
Do risks for myocardial infarction (MI) differ among cyclo-

oxygenase-2 (COX-2) selective inhibitors and nonselective

nonsteroidal anti-inflammatory drugs (NSAIDs)?

Contribution
This retrospective study involving 113,927 people older

than age 65 years used Que´bec’s administrative health
databases to examine associations between various

NSAIDs and risk for a first MI. Compared with nonuse of

NSAIDs, use of rofecoxib was associated with a 1.24

higher relative risk for MI (95% CI, 1.05 to 1.46), while

neither celecoxib nor other NSAIDs were associated with

statistically significant increased risks.

Cautions
Although analyses controlled for potential confounders,

unmeasured factors such as over-the-counter use of aspirin

and ibuprofen could have affected results.

—The Editors

METHODS

Study Sample and Data Source

We identified a cohort of individuals 66 years of age

and older newly treated with an NSAID by using the com-

puterized health insurance and vital statistics databases of

the province of Que´bec, Canada. These administrative da-

tabases were developed as a result of the universal health

care programs offered to residents and are now extensively

used for research (17–23). We used the following data

sources for this study: 1) the beneficiary database, managed

by the Re´gie de l’Assurance-Maladie du Que´bec (RAMQ),

which provided information on sociodemographic charac-

teristics and dates of coverage; 2) the prescription drug

database, which provided information on all outpatient

prescriptions dispensed to residents 65 years of age and

older, including drug name, strength, quantity, days sup-

plied, and dispensing date; 3) the medical services database,

which provided information on all medical visits, including

the date and nature of service, with diagnostic codes, loca-

tion of service, and physician’s specialty; 4) the hospitaliza-

tion database, which provided information on all hospital-

izations, including date of admission and discharge, primary diagnosis, and up to 15 secondary diagnoses codes, and

an indicator of hospital mortality when applicable; and

5) the vital statistics database, which provided information

on all deaths, including date and cause. Each resident is

Study Design
We conducted a retrospective, population-based co-

hort study that was analyzed by using a time-matched,

nested case-control approach. The cohort consisted of a

random sample (n = 125,000) of all residents age 66 years

and older who were dispensed an NSAID between 1 Jan-

uary 1999 and 30 June 2002; the date of the first prescrip-

tion was taken as cohort entry. We excluded persons who

had not been enrolled in the health plan for at least 1 year

preceding cohort entry, had been dispensed a study drug

within this 1-year baseline period (n = 1193), or had re-

ceived prescriptions from 2 or more NSAID categories on

the day of cohort entry (n = 153). We also excluded per-

sons hospitalized for an MI (International Classification of

Diseases, Ninth Revision, codes 410 [acute] and 412 [old],

all diagnostic fields) any time before cohort entry (n = 8168).

We followed the remaining individuals until the

earlier of one of the following dates: first hospitalization for

an acute MI, end of coverage (due to death or emigration

from the province), death, or end of the study (31 Decem-

ber 2002).

Study End Point
The case-defining event was a first hospitalization with

a diagnosis of acute MI (International Classification of

Diseases, Ninth Revision, code 410), nonfatal or fatal, oc-

curring any time after cohort entry. The date of admission

was used as the index date. This diagnostic code has pre-

viously been validated (24). For the MI to be considered a

valid study end point, the hospital length of stay had to be

at least 3 days, unless the patient had been transferred to or

from another institution or had undergone percutaneous

coronary angioplasty.

NSAID Exposure
All NSAIDs covered by the prescription drug benefit

program during the study period were identified and clas-

sified into the following mutually exclusive categories, de-
termined prospectively on the basis of their differential in-
hibition of cyclooxygenase: 1) NSAIDs (nonselective,

nonaspirin NSAIDs, excluding naproxen), 2) naproxen

(partially selective), 3) celecoxib (COX-2 selective), 4) ro-

ccoxib (COX-2 selective), and 5) meloxicam (preference-
tially selective COX-2 inhibitor). All of these agents were

available without prescribing restrictions. Valdecoxib could

not be included because it was not available in Canada

when the study was initiated. The accuracy and complete-
ess of the prescription drugs database have previously

been demonstrated; less than 1% of the information is out

of range or missing (25).

The exposure time window of primary interest, iden-
tified a priori, was current use. However, we also evaluated

use in the year preceding the index date (ever use). Indi-

guals were considered currently exposed if the duration of

the last prescription dispensed overlapped with the index
date. Past users had filled at least 1 NSAID prescription in

the year preceding the index date but were not currently
exposed, whereas ever users included both current and past users. Those who had not received any NSAIDs in the year preceding the index date were classified as nonusers in this time period.

We defined the following dosage categories for the COX inhibitors a priori: 200 mg/d or less (low-dose) or greater than 200 mg/d (high-dose) for celecoxib and 25 mg/d or less (low-dose) or greater than 25 mg/d (high-dose) for rofecoxib. To study the effects of aspirin on the relationship between NSAIDs and MI, we classified individuals as current users of aspirin if the duration of the last aspirin prescription dispensed before the event overlapped with the index date or ended within 30 days of this date. We used the 30-day grace period to account for aspirin’s irreversible effect on platelet aggregation and the possibility of nonadherence (26, 27).

Statistical Analysis

To study exposure to NSAIDs in relation to the index date (the etiologically relevant exposure time window) while simultaneously controlling for the potentially confounding effects of calendar time, we used a time-matched, nested case–control analysis (28, 29). The index date of each case-patient was used to define the risk sets from which controls were chosen. For each case-patient, we randomly selected 20 controls matched on month and year of cohort entry and age (±1 year) and assigned them the case-patient’s index date. Consequently, follow-up time was identical for case-patients and controls within each risk set. We compared the risk for acute MI associated with the current use of various NSAIDs with that of “nonusers” in the year preceding the index date. Thus, we could disentangle the independent effect of individual COX inhibitors from those of naproxen and other NSAIDs since all exposure groups were compared with nonusers. We estimated crude and adjusted rate ratios (RRs) for these associations using conditional logistic regression (30, 31). These measures of association are equal to the hazard ratios that would be estimated from the corresponding Cox proportional hazards regression. All rate ratios were adjusted for the potentially confounding effects of well-established conventional risk factors, including age; sex; hypertension; coronary artery disease; cerebrovascular disease; peripheral vascular disease; congestive heart failure; diabetes; and use of antilipemic agents, anticoagulants, and aspirin. In addition, the presence of respiratory illness, gastrointestinal ulcer disease, thyroid disorders, depression or psychiatric illness, use of oral corticosteroids, 3 measures of health care utilization (the number of hospitalizations, medical outpatient visits, and visits to a cardiologist), as well as 3 measures of comorbidity (the chronic disease score [32], the number of distinct drugs dispensed [33], and the Charlson index [34]), were evaluated as possible confounders using the change-in-estimate method (35). Covariates were retained in the final model if the risk estimate changed by 10% or more. We report risk estimates adjusted for all aforementioned covariates, including nonconfounders, because a parsimonious modeling approach provided no important gain in precision. With the exception of health care utilization and indices of comorbidity, which were assessed in the year preceding the index date, all other covariates were assessed in the year before cohort entry (at baseline).

We identified medications using the prescription drug database and identified comorbid conditions using both discharge diagnosis codes and specific corresponding drug treatments.

Since aspirin use is an important determinant of MI (36, 37) and may modify the association between NSAIDs and MI, we included an interaction term for the current use of aspirin in subsequent models.

Role of the Funding Source

The Canadian Institutes of Health Research funded this study and had no role in the design, conduct, or reporting of the study or the decision to submit the manuscript for publication.

RESULTS

A total of 302,964 elderly persons initiated treatment with an NSAID during the study period (Figure). Because the provincial ethics review board considered this cohort too large, the RAMQ selected a random sample of 125,000 individuals before data transfer. After we applied the exclusion criteria, the study cohort consisted of 113,927 persons with a mean age (±SD) of 75.2 ± 5.5 years at cohort entry. This cohort was followed for an average (±SD) of 2.4 ± 0.98 years. A previous MI was the primary source of exclusions. During follow-up, 2844 individuals were hospitalized for a first MI; 561 of these patients (20%) had a fatal MI.

In the year preceding the index date, 70.7% of case-patients and controls received at least 1 NSAID prescription (ever use), of which 51.8% were past users and 18.9% were current users. Therefore, 29.3% of individuals were classified as nonusers (reference category) during this time period. Among those currently exposed, the mean (±SD) number of prescriptions dispensed in the year preceding the index date was 3.8 ± 3.3 for traditional NSAIDs, 3.0 ± 3.5 for naproxen, 6.2 ± 6.1 for celecoxib, 5.3 ± 5.7 for rofecoxib, and 4.3 ± 4.0 for meloxicam. More than 95% of persons dispensed aspirin received a daily dose of 325 mg or less.

Table 1 describes the characteristics of case-patients and controls. As expected, case-patients were more likely to be male, have traditional risk factors, have other manifestations of atherosclerosis, and be using aspirin before cohort entry. In the year preceding the index date, case-patients were also more likely to have been hospitalized and have consulted physicians, and they appeared generally sicker than controls.

After adjustment for multiple risk factors, individuals exposed to rofecoxib on the index date (current users) were
at an increased risk for MI compared with those who had not used an NSAID in the year preceding the index date (RR, 1.24 [95% CI, 1.05 to 1.46]) (Table 2). No evidence suggested an elevated risk associated with the current use of celecoxib (RR, 0.99 [CI, 0.85 to 1.16]). Similarly, traditional NSAIDs (RR, 1.00 [CI, 0.73 to 1.37]), naproxen (RR, 1.17 [CI, 0.75 to 1.84]), and meloxicam (RR, 1.06 [CI, 0.49 to 2.30]) were not associated with a higher risk for MI. Users of NSAIDs any time in the year preceding the index date were not at increased risk for MI, including those who had taken rofecoxib (RR, 0.97 [CI, 0.85 to 1.10]) or celecoxib (RR, 1.00 [CI, 0.88 to 1.13]).

The magnitude of the risk observed for current users of rofecoxib compared with those who had not used an NSAID in the year preceding the index date appeared to be higher for individuals prescribed a dosage greater than 25 mg/d (RR, 1.73 [CI, 1.09 to 2.76]), although even low doses of rofecoxib were associated with an elevated risk (RR, 1.21 [CI, 1.02 to 1.43]) (Table 3). We observed no dose–response effect among users of celecoxib (RR, 0.98

Figure. Flow of study cohort.

| AMI = acute myocardial infarction; ICD-9 = International Classification of Diseases, Ninth Revision; NSAID = nonsteroidal anti-inflammatory drug. |
Risk for Myocardial Infarction with COX-2 Inhibitors

Table 1. Characteristics of Case-Patients and Controls

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Case-Patients (n = 2844)</th>
<th>Controls (n = 56 880)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age ± SD, y*</td>
<td>78.1 ± 5.4</td>
<td>78.1 ± 5.4</td>
</tr>
<tr>
<td>Sex, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>53.5</td>
<td>68.0</td>
</tr>
<tr>
<td>Male</td>
<td>46.5</td>
<td>32.0</td>
</tr>
<tr>
<td>Comorbidity conditions, %†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>57.0</td>
<td>49.8</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>30.1</td>
<td>16.5</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>13.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Diabetes</td>
<td>23.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Respiratory illness</td>
<td>24.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Gastrointestinal ulcer disease</td>
<td>26.6</td>
<td>23.6</td>
</tr>
<tr>
<td>Thyroid disorders</td>
<td>16.5</td>
<td>17.1</td>
</tr>
<tr>
<td>Depression/psychiatric illness</td>
<td>14.7</td>
<td>14.4</td>
</tr>
<tr>
<td>Cancer</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Use of concomitant therapy, %†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiinflammatory agent</td>
<td>22.3</td>
<td>19.3</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>5.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Low-dose aspirin</td>
<td>35.7</td>
<td>21.8</td>
</tr>
<tr>
<td>Oral corticosteroids</td>
<td>8.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Health care utilization, %‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitalizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>62.3</td>
<td>62.4</td>
</tr>
<tr>
<td>≥1</td>
<td>37.7</td>
<td>23.6</td>
</tr>
<tr>
<td>Outpatient medical visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All physician visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤12</td>
<td>63.0</td>
<td>72.5</td>
</tr>
<tr>
<td>12</td>
<td>37.0</td>
<td>27.5</td>
</tr>
<tr>
<td>Cardiologist visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>75.5</td>
<td>85.2</td>
</tr>
<tr>
<td>≥1</td>
<td>24.5</td>
<td>14.8</td>
</tr>
<tr>
<td>Comorbidity indices‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean different drugs ± SD, n</td>
<td>10.9 ± 6.2</td>
<td>8.3 ± 5.2</td>
</tr>
<tr>
<td>Mean chronic disease score ± SD</td>
<td>7.2 ± 4.2</td>
<td>5.4 ± 3.9</td>
</tr>
<tr>
<td>Mean Charlson index score ± SD</td>
<td>0.73 ± 1.6</td>
<td>0.33 ± 1.1</td>
</tr>
</tbody>
</table>

* At index date.
† In the year preceding initiation of therapy with an anti-inflammatory agent (that is, cohort entry).
‡ In the year preceding the index date.

[Ci, 0.83 to 1.17] for ≤200 mg/d; RR, 1.00 [Ci, 0.78 to 1.29] for >200 mg/d). We could not assess the influence of meloxicam dose because there were too few current users of this drug.

The coadministration of aspirin did not modify the association for users of traditional NSAIDs (Table 4). Current users of naproxen combined with aspirin appeared to have a lower risk for MI (RR, 0.60 [Ci, 0.24 to 1.50]) than those not receiving concomitant aspirin therapy (RR, 1.59 [Ci, 0.95 to 2.65]). The association between celecoxib use, at any dose, and MI was not materially changed by aspirin. However, aspirin decreased the overall excess risk for MI associated with the current use of rofecoxib from 37% (RR, 1.37 [Ci, 1.12 to 1.68]) to 7% (RR, 1.07 [Ci, 0.84 to 1.36]). In addition, aspirin eliminated the excess risk for MI in persons receiving low doses of rofecoxib (RR, 1.00 [Ci, 0.77 to 1.28]) but did not reduce the risk in individuals prescribed high doses of this agent (RR, 2.36 [Ci, 1.27 to 4.39]). We could not evaluate the effect of aspirin on risk for MI in meloxicam users because too few persons were current users.

Discussion

Our study, with nearly 5 times as many rofecoxib-exposed case-patients with MI as reported in the recent cumulative meta-analysis (38), provides additional evidence that the use of rofecoxib is associated with an increased risk for acute MI. Our data also suggest that the risk is higher at dosages exceeding 25 mg/d. Of note, individuals who had used rofecoxib any time in the year preceding the index date did not experience an increased risk; this finding shows the need for contemporaneous exposure. In addition, the mean number of rofecoxib prescriptions dispensed in the year preceding the MI was only 5.3 ± 5.7, implying that long-term exposure may not be necessary. We have also shown that the cardiotoxic effect of rofecoxib previously observed in older and sicker populations (7, 9) extends to a healthier elderly population.

An important limitation of previously published studies has been the lack of information on the effects of concomitant aspirin use. A recent prospective, case-control study of COX inhibitor users (10) was the first to report MI risk stratified by aspirin use. Our study, with 10 times the sample size of that study, allows a more precise estimation of this interaction and suggests that concomitant aspirin use attenuates the nefarious cardiovascular effects of low-dose rofecoxib. A possible interaction between naproxen and aspirin requires confirmation in a larger study. However, this interaction could partly reconcile the conflicting findings of previous naproxen studies (17, 39–42) because different population mixes of these drugs may have produced results varying from a protective effect in populations with high use of concomitant aspirin to no protection in populations with low use. Reassuringly, we, like others (7, 9), found no increased risk among users of celecoxib, regardless of the dose prescribed. It is important to recognize that only 25% of current users of celecoxib received dosages greater than 200 mg/d, of which less than 0.1% received 800 mg/d or more. In addition, the confidence intervals do not rule out the possibility of a small risk or benefit from this agent. Our study also provides preliminary data on the cardiovascular safety of rofecoxib. Traditional NSAIDs and naproxen were not associated with an increased cardiovascular risk or benefit.

Our findings are consistent with the results of the VIGOR study (2, 4), a cumulative meta-analysis of all randomized rofecoxib trials (38), and the APPROVe results (14–16). Indeed, our adjusted risk estimate of 2.36 (Ci, 1.27 to 4.39) for high-dose rofecoxib combined with aspirin is almost identical to that reported for VIGOR participants randomly assigned to rofecoxib, 50 mg/d (RR, 2.38

www.annals.org

5 April 2005 Annals of Internal Medicine Volume 142 • Number 7
Table 2. Crude and Adjusted Rate Ratios of Acute Myocardial Infarction for Use of Various Anti-Inflammatory Agents*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case-Patients (n = 2844), n (%)</th>
<th>Controls (n = 56 880), n (%)</th>
<th>Crude Rate Ratio</th>
<th>Adjusted† Rate Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of current use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No use‡</td>
<td>793 (27.9)</td>
<td>16 680 (29.3)</td>
<td>1.00</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Current use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>51 (1.8)</td>
<td>962 (1.7)</td>
<td>1.17</td>
<td>1.00 (0.73–1.37)</td>
</tr>
<tr>
<td>Naproxen</td>
<td>23 (0.8)</td>
<td>336 (0.6)</td>
<td>1.52</td>
<td>1.17 (0.75–1.84)</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>287 (10.1)</td>
<td>5598 (9.9)</td>
<td>1.11</td>
<td>0.99 (0.85–1.16)</td>
</tr>
<tr>
<td>Rofecoxib</td>
<td>239 (8.4)</td>
<td>3708 (6.5)</td>
<td>1.41</td>
<td>1.24 (1.05–1.46)</td>
</tr>
<tr>
<td>Meloxicam</td>
<td>7 (0.2)</td>
<td>132 (0.2)</td>
<td>1.15</td>
<td>1.06 (0.49–2.30)</td>
</tr>
<tr>
<td>Past use§</td>
<td>1444 (50.8)</td>
<td>29 464 (51.8)</td>
<td>1.05</td>
<td>0.93 (0.84–1.04)</td>
</tr>
<tr>
<td>Analysis of any use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No use‡</td>
<td>793 (27.9)</td>
<td>16 680 (29.3)</td>
<td>1.00</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Any use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>271 (9.5)</td>
<td>5932 (9.7)</td>
<td>1.07</td>
<td>0.91 (0.77–1.09)</td>
</tr>
<tr>
<td>Naproxen</td>
<td>106 (3.7)</td>
<td>2017 (3.5)</td>
<td>1.15</td>
<td>0.98 (0.78–1.24)</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>751 (26.4)</td>
<td>14 898 (26.2)</td>
<td>1.09</td>
<td>1.00 (0.88–1.13)</td>
</tr>
<tr>
<td>Rofecoxib</td>
<td>544 (19.1)</td>
<td>10 990 (19.3)</td>
<td>1.06</td>
<td>0.97 (0.85–1.10)</td>
</tr>
<tr>
<td>Meloxicam</td>
<td>13 (0.5)</td>
<td>312 (0.6)</td>
<td>0.89</td>
<td>0.76 (0.43–1.36)</td>
</tr>
<tr>
<td>Combined use¶</td>
<td>366 (12.9)</td>
<td>6451 (11.4)</td>
<td>1.23</td>
<td>0.99 (0.86–1.15)</td>
</tr>
</tbody>
</table>

* NSAIDs = nonsteroidal anti-inflammatory drugs.
† Adjusted for age at index (continuous variable); sex, hypertension, coronary artery disease, cerebrovascular disease, peripheral vascular disease, congestive heart failure, diabetes, respiratory illness, gastrointestinal ulcer disease, thyroid disorders, depression/psychiatric illness, and cancer in the year preceding cohort entry; use of concomitant therapy, including antilipemic agents, anticoagulants, and low-dose aspirin in the year preceding cohort entry; health care utilization, including hospitalizations, outpatient visits to any physician, and outpatient cardiologist visits, in the year preceding the index date; and number of different drugs taken, chronic disease score, and Charlson index score in the year preceding the index date.
‡ No use in the year preceding the index date.
§ Past users are those who were currently unexposed but had received at least 1 prescription for an NSAID in the year preceding the index date.
¶ Combined use represents the dispensing of 2 or more categories of NSAIDs in the year preceding the index date.

The observed pattern of risk is consistent with the pharmacologic effects of COX-2 selective inhibitors, as well as with known pharmacodynamic differences among these agents (1, 43–46). Selective COX-2–mediated inhibition of prostacyclin, a potent inhibitor of platelet aggregation, is believed to lead to a prothrombotic state secondary to the unopposed activity of COX-1–mediated thromboxane A₂ (26, 47, 48). Thromboxane A₂ is prothrombotic because it favors the triad of platelet aggregation, vasoconstriction, and smooth-muscle proliferation. In contrast, prostacyclin counters these effects, raising the possibility that COX-2 selective inhibitors may tip this homeo-

Table 3. Crude and Adjusted Rate Ratios of Acute Myocardial Infarction for Current Use of Celecoxib and Rofecoxib according to Dose

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case-Patients</th>
<th>Controls</th>
<th>Adjusted* Rate Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use, n</td>
<td>793</td>
<td>16 680</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Celecoxib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipients, n</td>
<td>287</td>
<td>5598</td>
<td></td>
</tr>
<tr>
<td>Low-dose use, n (%)‡</td>
<td>208 (72.5)</td>
<td>4176 (74.6)</td>
<td>0.98 (0.83–1.17)</td>
</tr>
<tr>
<td>High-dose use, n (%)§</td>
<td>79 (27.5)</td>
<td>1422 (25.4)</td>
<td>1.00 (0.78–1.29)</td>
</tr>
<tr>
<td>Rofecoxib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipients, n</td>
<td>239</td>
<td>3708</td>
<td></td>
</tr>
<tr>
<td>Low-dose use, n (%)‡</td>
<td>218 (91.2)</td>
<td>3485 (94.0)</td>
<td>1.21 (1.02–1.43)</td>
</tr>
<tr>
<td>High-dose use, n (%)§*</td>
<td>21 (8.8)</td>
<td>223 (6.0)</td>
<td>1.73 (1.09–2.76)</td>
</tr>
</tbody>
</table>

* Adjusted for age at index (continuous variable); sex, hypertension, coronary artery disease, cerebrovascular disease, peripheral vascular disease, congestive heart failure, diabetes, respiratory illness, gastrointestinal ulcer disease, thyroid disorders, depression/psychiatric illness, and cancer in the year preceding cohort entry; use of concomitant therapy, including antilipemic agents, anticoagulants, and low-dose aspirin in the year preceding cohort entry; health care utilization, including hospitalizations, outpatient visits to any physician, and outpatient cardiologist visits, in the year preceding the index date; number of different drugs taken, chronic disease score and Charlson index score in the year preceding the index date; and past use of nonsteroidal anti-inflammatory drugs.
† No use in the year preceding the index date.
‡ ≤200 mg/d and ≤25 mg/d for celecoxib and rofecoxib, respectively.
§ >200 mg/d and >25 mg/d for celecoxib and rofecoxib, respectively.

[CI, 1.39 to 4.00]) (5). Since 36% of our case-patients were taking aspirin at cohort entry, our findings contradict the hypothesis that the increased risk in the VIGOR trial was due to the protocol prohibition of aspirin. In addition, our results are similar to those of 2 recent observational studies that found an increased risk for myocardial infarction among users of high-dose rofecoxib (7, 9) and confirm that this risk extends to users of low doses.
static balance in favor of atherothrombosis. This hypothesis could also explain why rofecoxib, at least at low doses, appears to be susceptible to the cardioprotective effects of aspirin, a potent and irreversible inhibitor of thromboxane A₂. The COX-2 inhibiting potency of rofecoxib is nearly 10 times greater than that of celecoxib or meloxicam, thereby possibly explaining the observed differences in risk between these COX inhibitors (44, 45). The unopposed prothrombic activity of thromboxane A₂ associated with rofecoxib is likely to be considerably greater than that of celecoxib or meloxicam because of these differences in COX-2 selectivity. Finally, the absence of an increased risk with ever use of rofecoxib, in contrast to the elevated risk in current users, is consistent with the reversible nature of COX-2 inhibition exhibited by this agent (27).

Our study had some limitations. First, while we did not observe any increased risk with the use of meloxicam, traditional NSAIDs, or naproxen, our power to detect meaningful differences was limited by the unexpectedly low use of these agents. Second, only case-patients admitted to the hospital were included in our analysis. Missing events due to silent myocardial infarctions and sudden death could have resulted in incomplete case ascertainment. In addition, the intermittent use that occasionally accompanies NSAID therapy may have led to misclassification of aspirin use. However, there is no reason to believe that ascertainment or exposure errors would have occurred differentially across drug groups. Consequently, any resulting bias would be toward the null. Third, we did not have information on smoking status, obesity, physical activity, family history, and socioeconomic status. If the distribution of these risk factors varied significantly across exposure groups, our results could be biased because of confounding by indication. Several studies have evaluated the potential for and magnitude of such bias and have demonstrated that any resulting bias would be negligible and directed toward the null (9, 42, 49, 50).

While a major strength of this study has been our accounting of the risk-modifying effects of aspirin, concern may exist about the possibility of misclassification due to missing information on over-the-counter use of aspirin, as well as ibuprofen (the only NSAID available over-the-counter in Canada). However, we expect the frequency of aspirin misclassification to be low because 1) a systematic campaign in Québec has been conducted to assure that all cardioprotective use of aspirin be formalized with written prescriptions (51), 2) low-dose aspirin is covered by the universal drug program, and 3) procurement of over-the-counter NSAIDs would be costlier. In addition, studies in similar populations but different jurisdictions have reported that self-medication with aspirin is low (≤10%) (9, 42, 49, 50). Finally, previous research conducted in Québec has shown that this prescription drug database captures almost all secondary cardioprotective aspirin use (18). Nevertheless, even if we accept that some degree of misclassification of aspirin use is possible, our data indicate that it would be nondifferential across the groups in comparison to the reference group (Table 4). The resulting bias would therefore be toward the null, meaning that our findings represent an underestimate of the true risk. Similar reasoning applies to over-the-counter use of ibuprofen.

It is important to consider the potential public health impact of our findings given the high prevalence of COX inhibitor use. A baseline rate of 10.6 MIs per 1000 person-years was observed in this cohort of elderly adults with no history of MI. This rate increased to 12.8 and 18.3 per 1000 persons per year among those receiving low and high doses of rofecoxib, respectively. Assuming causality, this

Table 4. Crude and Adjusted Rate Ratios of Acute Myocardial Infarction for Current Use of Anti-Inflammatory Agents according to Concomitant Use of Aspirin and Dose of Cyclooxygenase-2 Selective Inhibitors*

<table>
<thead>
<tr>
<th>Variable</th>
<th>No Concomitant Use of Aspirin</th>
<th>Concomitant Use of Aspirin</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case-Patients, n</td>
<td>Controls, n</td>
<td>Adjusted RR‡ (95% CI)</td>
</tr>
<tr>
<td>No use</td>
<td>440</td>
<td>12 013</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Naproxen</td>
<td>32</td>
<td>724</td>
<td>1.04 (0.71–1.54)</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>176</td>
<td>4043</td>
<td>1.07 (0.89–1.30)</td>
</tr>
<tr>
<td>Low-dose§</td>
<td>126</td>
<td>3021</td>
<td>1.04 (0.84–1.28)</td>
</tr>
<tr>
<td>High-dose</td>
<td>50</td>
<td>1022</td>
<td>1.16 (0.85–1.57)</td>
</tr>
<tr>
<td>Rofecoxib</td>
<td>143</td>
<td>2586</td>
<td>1.37 (1.12–1.68)</td>
</tr>
<tr>
<td>Low-dose§</td>
<td>135</td>
<td>2432</td>
<td>1.38 (1.12–1.69)</td>
</tr>
<tr>
<td>High-dose</td>
<td>8</td>
<td>154</td>
<td>1.23 (0.92–1.64)</td>
</tr>
<tr>
<td>Meloxicam</td>
<td>2</td>
<td>92</td>
<td>0.59 (0.14–2.41)</td>
</tr>
</tbody>
</table>

* NSAID = nonsteroidal anti-inflammatory drug; RR = rate ratio.
† P value for 2-sided test of interaction comparing use and nonuse of aspirin at a significance level of α = 0.05.
‡ Adjusted for age at index (continuous variable); sex, hypertension, coronary artery disease, cerebrovascular disease, peripheral vascular disease, congestive heart failure, diabetes, respiratory illness, gastrointestinal ulcer disease, thyroid disorders, depression/psychiatric illness, and cancer in the year preceding cohort entry; use of concomitant therapy, including antilipemic agents, anticoagulants, and low-dose aspirin in the year preceding cohort entry; health care utilization, including hospitalizations, outpatient visits to any physician, and outpatient cardiologist visits, in the year preceding the index date; number of different drugs taken, chronic disease score, and Charlson index score in the year preceding the index date; and past use of NSAIDs. Rate ratios are for current users compared with nonusers.
§ ≥200 mg/d and ≤25 mg/d for celecoxib and rofecoxib, respectively.
†| ≥200 mg/d and >25 mg/d for celecoxib and rofecoxib, respectively.
Risk for Myocardial Infarction with COX-2 Inhibitors

JAMA. 2004;292:691. [PMID: 15464902]

...corresponds to an excess rate attributable to rofecoxib of 2.2 and 7.7 MIs per 1000 exposed elderly adults per year. In conclusion, our results provide evidence of an increased risk for myocardial infarction, nonfatal and fatal, with current use of rofecoxib, even in individuals with no history of myocardial infarction. The concomitant use of aspirin in persons using low-dose rofecoxib appears to mitigate this risk. Although the observational nature of our study limits the ability to assign causality, the totality of the current evidence confirms the increased cardiovascular risk associated with rofecoxib and the sagacity of its withdrawal. Of equal importance, we provide evidence against a broad class effect for COX-2-mediated cardiotoxicity when used at usual doses. Nevertheless, given the widespread use of these agents and the increased risk seen in a recent cancer trial of high-dose celecoxib, further research should be undertaken. Until evidence to the contrary is available, new agents with COX-2 inhibitory potency similar to or greater than that of rofecoxib should be used only with extreme caution, even in populations at relatively low risk for cardiovascular events.

From McGill University Health Centre, McGill University, Montréal, Québec, Canada.

Disclaimer: This study is based on nonidentifiable data provided by several Québec Government agencies. The interpretation and conclusions contained herein do not necessarily represent those of the government of Québec or these agencies. The interpretation and conclusions contained herein do not necessarily represent those of the government of Québec or these agencies.

Grant Support: By a grant from the Canadian Institutes of Health Research (CIHR grant MOP62871). Dr. Brophy is a Physician-Scientist of the Fonds de la recherche en santé du Québec.

Potential Financial Conflicts of Interest: None disclosed.

Requests for Single Reprints: James Brophy, MD, PhD, Cardiology Division, Room M4.76, McGill University Health Centre, Royal Victoria Hospital, 687 Pine Avenue West, Montréal, Québec H3A 1A1, Canada; e-mail, james.brophy@mcgill.ca.

Current author addresses and author contributions are available at www.annals.org.

References

Current Author Addresses: Ms. Lévesque and Drs. Brophy and Zhang: McGill University Health Centre, Royal Victoria Hospital, 687 Pine Avenue West, Montréal, Québec H3A 1A1, Canada.